
Implementing SNOBOL4 in SIL; Version 3.11

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

February 1981

Implementing SNOBOL4 in SIL; Version 3.11

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

1. Intr oduction

The SNOBOL4 programming language is implemented in macro-assembly language called SIL
(SNOBOL4 Implementation Language).This macro language is largely machine-independent and is
designed so that it can be implemented on a variety of computers.Thus, an implementation of the
SNOBOL4 programming language can be obtained by implementing the much simpler macro language.
By implementing the macro language, and using the SNOBOL4 system already written in the macro
language, one obtains a version of SNOBOL4 that is largely source-language compatible with other
versions implemented in the same way. Nearly all the logic of the SNOBOL4 language resides in the
program written in the macro language.Thus if the macro language is implemented properly, the resulting
implementation of SNOBOL4 is essentially the same as other such implementations.

This paper describes the macro language and contains information necessary for its implementation.
Information given here related to Version 3.11 of the SIL source, although it applies equally well to any
modification of the basic Version 3.Section 2 describes environmental considerations.Section 3 describes
the representation of data.Syntax tables and character graphics are described in Section 4.Section 5
explains the method used to describe the macro operations.Section 6 is a list of all macro operations with a
description of how to implement each one.Section 7 contains miscellaneous implementation notes.
Supplementary information, including a list of other documentation, is given in appendices.

2. Environmental Considerations

2.1. Input and Output

SNOBOL4 is designed to perform all input and output through FORTRAN IV routines. A
SNOBOL4 object program has much the same I/O facilities as a FORTRAN IV object program.
Specification of I/O is thus largely machine-independent both at the source-language level and at the
implementation level.

Files are referred to by their FORTRAN unit reference numbers.In SNOBOL4 unit reference
numbers are integers that appear in data that is given in arguments to macros that perform input and output.
Unit reference numbers are referred to symbolically in the SNOBOL4 assembly. See thePARMS file in
the discussion of theCOPY macro.

Input, performed bySTREAD, uses only A conversion, with lengths being specified.Output is
controlled by formats.Output is performed byOUTPUT and STPRNT. The output done by the
SNOBOL4 system specifies H-type literals, A, I, and, in one case, F conversion.Programmer formats
should include only literals, X, T, and A conversion.Generally speaking, formats occur in ‘‘‘ undigested’’’
form. Formatsused byOUTPUT are assembled by theFORMAT macro and are intended to be simply
character strings representing undigested formats.FORMAT may, however, assemble any convenient
representation of the format.Formats used bySTPRNT are strings that may be formed during program
execution and hence must be accepted in their undigested form.

There are three other I/O related operations that correspond to their FORTRAN counterparts.These
areBKSPCE, ENFILE, andREWIND.

The easiest way to implement SNOBOL4 I/O is to use FORTRAN calling sequences for
corresponding operations and link the FORTRAN I/O library with the SNOBOL4 system.The main

- 1 -

difficulties usually occur in handling undigested formats.When questions arise as to what an operation
should do, FORTRAN conventions should be applied.A programmer should get the same results from
SNOBOL4 as from FORTRAN if, for example, a string of 200 characters is requested from a file
containing 80-character records.

2.2. StorageRequirements

The SNOBOL4 system itself is very large and SNOBOL4 programs typically require large amounts
of dynamically allocated storage.The magnitude of these requirements may be determined from the
implementation for the IBM System/360.This system requires a user partition of about 200K bytes
(characters) to run large programs.A partition of about 170K bytes permits execution of small programs.
Of the space required, the SNOBOL4 system and its internal data consume about 100K bytes, the
FORTRAN I/O routines consume about 14K bytes, and the remainder is devoted to dynamically allocated
storage. Allocatedstorage is referred to in machine-independent data units (see the next section) called
descriptors that occupy 8 bytes each on the IBM System/360.A production system should be able to
provide about 10,000 descriptors of dynamically allocated storage.Because of the large amount of space
required for dynamic storage, overlay techniques for the program itself can only partially reduce the
requirements for physical storage.Vi rtual memory systems may display poor performance if SNOBOL4 is
run with inadequate amounts of physical storage.

2.3. OtherConsiderations

SNOBOL4 makes few other demands on its operating system environment.Facilities should be
provided so that the SNOBOL4 system can be called and can return to the operating system under which it
operates. SNOBOL4uses dump facilities to provide core dumps requested by the keyword&ABEND if
such facilities are available.Time and date information is used by SNOBOL4, but it is not essential.

3. Representation of Data

There are a few basic types of data used in the SNOBOL4 system, and a number of aggregates of the
basic types.The basic types of data are:

descriptors
specifiers
character strings
syntax table entries

3.1. Descriptors

Descriptors are used to represent all pointers, integers, and real numbers.A descriptor may be
thought of as the basic ‘‘‘ word’’’ o f SNOBOL4. Descriptorsconsist of three fixed-length fields:

address
flag
value

The size and position of these fields is determined from the data they must represent and the way that
they are used in the various operations.The following paragraphs describe some specific requirements.

3.1.1. Address Field

The address field of a descriptor must be large enough to address any descriptor, specifier, or program
instruction within the SNOBOL4 system.(Descriptors do not have to address individual characters of
strings. SeeSection 3.2.) The address field must also be large enough to contain any integer or real
number (including sign) that is to be used in a SNOBOL4 program.The address field is the most
frequently used field of a descriptor and is used frequently for addressing and integer arithmetic and it
should be positioned so that these operations can be performed efficiently.

- 2 -

3.1.2. FlagField

The flag field is used to represent the states of a number of disjoint conditions and is treated as a set
of bits that are individually tested, turned on, and turned off. Fiveflag bits used in SNOBOL4.

3.1.3. Value Field

The value field is used to represent a number of internal quantities that are represented as unsigned
integers (magnitudes).These quantities include the encoded representation of source-language data types,
the length of strings, and the size (in address units) of various data aggregates.The value field need not be
as large as the address field, but it must be large enough to represent the size of the largest data aggregate
that can be formed.

On the IBM System/360, a descriptor is two words (eight bytes).The first word is the address field.
The second word consists of one byte for the flag field and three bytes for the value field.The three bytes
(24 bits) for the value field permits representation of data objects as large as 224-1 bytes. On the other
hand, two bytes would limit objects to 216-1 bytes.Since on the IBM System/360 there are eight bytes per
descriptor, 216-1 bytes would limit objects to 8191 descriptors, which would be too restrictive.For
machines with fewer address units per descriptor, the value field need not be as large.

3.2. Specifiers

Specifiers are used to refer to character strings.Almost all operations performed on character strings
are handled through operations on specifiers.All specifiers are the same size and have five fields:

address
flag
value
offset
length

Specifiers and descriptors may be stored in the same area indiscriminately, and are indistinguishable
to many processes in the SNOBOL4 system.As a result, specifiers are composed of two descriptors.One
descriptor is used in the standard way to provide the address, flag, and value fields.The other descriptor is
used in a nonstandard way. Its address field is used to represent the offset of an individual character from
the address given in the specifier’s address field.The value field of this other descriptor is used for the
length.

3.3. CharacterStrings

Character strings are represented in packed format, as many characters per descriptor as possible.
Storage of character strings in SNOBOL4 dynamic storage is always in storage units that are multiples of
descriptors.

3.4. SyntaxTable Entries

Syntax tables are necessarily somewhat machine dependent.Consequently, implementation of these
tables is done individually for each machine.A description of the table requirements is given in the next
section.

4. SyntaxTables and Character Graphics

4.1. Characters

The SNOBOL4 language permits the use of any character that can be represented on a particular
machine. Thereare certain characters that have syntactic significance in the source language.The card
codes, graphics, and internal representations vary from machine to machine.For each machine,
representations are chosen for each of the syntactically significant characters.Such characters and sets of
characters are given descriptive names to avoid dependence on a particular machine.In the list that
follows, ASCII graphics are used as a point of reference.

- 3 -

function name graphics

ALPHANUMERIC digit and letter ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

AT operator @
BLANK separator and operator blank and tab
BREAK dot and underscore .
CMT comment card *
CNT continue card +.
COLON goto designator and :

dimension separator
COMMA argument separator ,
CTL control card -
DOLLAR operator $
DOT operator .
DQUOTE literal delimiter "
EOS statement terminator ;
EQUAL assignment =
FGOSYM failure goto designator F
KEYSYM operator &
LEFTBR reference and goto delimiter < [
LEFTPAREN expression delimiter (
LETTER letter ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz
MINUS operator -
NOTSYM operator ˜
NUMBER digit 0123456789
ORSYM operator |
PERCENT operator %
PLUS operator +
POUND operator #
QUESYM operator ?
RAISE operator ˆ
RIGHTBR reference and goto delimiter >]
RIGHTPAREN expression delimiter)
SGOSYM success goto designator S
SLASH operator /
SQUOTE literal delimiter ’
STAR operator *
TERMINATOR expression terminator ;)>,] blank and tab

4.2. SyntaxTables

The lexical syntax of the SNOBOL4 language is analyzed using the operationSTREAM (q.v.) which
is driven from syntax tables.The syntax tables provide a representation of a finite state machine used
during lexical analysis.See Reference 3 in Appendix B for a more detailed discussion.

In a syntax table there is an entry for each character at a position corresponding to the numerical
value of the internal encoding of that character. The syntax table entry specifies the action to be taken if
that character is encountered.The actions are:

1. CONTIN, indicating that the current syntax table is to be used for processing the next character.

2. GOTO(TABLE), indicating thatTABLE is to be used for processing the next character.

- 4 -

3. STOP, indicating thatSTREAM should terminate with the last character examined to be included in
the accepted string.

4. STOPSH, indicating theSTREAM should terminate with the last character examinednot to be
included in the string accepted.

5. ERROR, indicating thatSTREAM should terminate with an error indication.

6. PUT(ADDRESS), indicating thatADDRESS is to be placed in the address field of the descriptor
STYPE.

The classes of characters for which actions are to be taken are given inFOR designations.CONTIN
and GOTO(TABLE) provide information about the next table to use and are typically represented by
addresses in syntax table entries.STOP, STOPSH, and ERROR are type indicators used to stop the
streaming process.

SNABTB is used in pattern matching forANY(CS), BREAK(CS), NOTANY(CS), and SPAN(CS).
SNABTB is modified during execution by the macrosCLERTB and PLUGTB (q.v.). Theother syntax
tables are not modified.

Two representative syntax table descriptions follow. A complete list is given in Appendix A.

BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR
END IBLKTB

BEGIN VARBTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END VARBTB

The syntax tables for the IBM System/360 implementation are generated from such descriptions
using a (SNOBOL4) program in which the character classes and the order of the internal character codes
are parameters.The use of some kind of automatic technique to generate the syntax tables is advisable,
both to ensure accuracy and because of the large amount of data involved.

5. Describingthe Macros

This section explains the method of describing the macros.The instructions for implementing an
operation usually consist of a description of the operation’s function, figures indicating data relating to the
operation, and programming notes that contain details and references to other relevant information.The
figures consist of stylized representations of the various data objects and the fields within them.

5.1. DiagrammaticRepresentation of Data

The representation of a descriptor atLOC1 is shown below. A, F, and V indicate the values of the
address, flag, and value fields.

LOC1 A F V

The representation of a specifier atLOC2 is shown below. A, F, V, O, and L indicate the values of
the address, flag, value, offset, and length fields.

- 5 -

LOC2 A F V O L

Character strings have two representations depending on how many characters are relevant to the
description. Theshort representation of a string ofL characters is shown below. C1 andCL are the first
and last characters, respectively. In this representation, the intermediate characters are indicated by dots.

LOC3 C1 ... CL

The long representation of a string ofL characters atLOC4 is shown below. CJ and CJ+1 are
relevant characters in the interior of the string.The long representation is used when such interior
characters must be specified.

LOC4 C1 ... CJ CJ+1 ... CL

The representation of a syntax table entry is shown below. A, T, and P indicate values of the next
table address, type indicator, and put field as specified by thePUT action.

LOC5 A T P

Various values and expressions may occur in the fields of data objects.Fields are left blank when
their value is not used in an operation.In data objects that are changed by an operation, unchanged fields
are left blank.For example, if the figure below referred to a descriptor to be changed, the new value of the
address field would beA2, and no other fields would be changed.

A2

Letters are used as abbreviations to differentiate the values that may appear in a field.The seven
basic fields are indicated by the lettersA, F, V, O, L, T, and P. Numerical suffixes (which may be thought
of as subscripts) are used as necessary to distinguish between values of the same type.Thus, for example,
A1, A32, and AN might be used to refer to addresses,F1 and F2 to flags, and so on.To make further
distinctions where appropriate,I andR are used to indicate integers and real numbers, respectively.

5.2. BranchPoints

Program labels are included in the argument lists of many macros.These addresses are points to
which control may be transferred, depending on data supplied to the macros.In general, some or all of the
branch points may be omitted in a macro call.An omitted branch point signifies that control is to pass to
the next macro in line if the condition corresponding to the omitted branch point is satisfied.For example
ACOMP is called in the following forms:

ACOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC
ACOMP DESCR1,DESCR2,GTLOC,EQLOC
ACOMP DESCR1,DESCR2,GTLOC
ACOMP DESCR1,DESCR2,GTLOC,,LTLOC
ACOMP DESCR1,DESCR2,,EQLOC,LTLOC
ACOMP DESCR1,DESCR2,,EQLOC
ACOMP DESCR1,DESCR2,,,LTLOC

whereGTLOC, EQLOC, and LTLOC are addresses to whichACOMP may branch.ACOMP is not called
with all three branch points omitted, since that is not a meaningful operation.Other macros such asSUM
(q.v.) are often called with all branch points omitted.

- 6 -

Implementation of the macros must take omission of branch points into consideration.Alternate
expansions, conditioned by the omission of branch points, may be used to generate more efficient code.

5.3. Abbreviations

Several abbreviations are used in the descriptions that follow. These are:

1. D is used for the addressing width of a descriptor. On the IBM System/360, the machine addressing
unit is one byte, andD is eight.

2. S is used for the addressing width of a specifier;S = 2D.

3. CPD is used for the number of characters stored per descriptor.

4. I is used for (signed) integers.

5. R is used for real numbers.

6. E is used for the address width of a syntax table entry.

7. Z is used to indicate the number of the last character in collating sequence.Characters are
‘‘‘ numbered’’’ f rom 0 toZ.

The data type codesI andR are defined in the SIL source program.The other codes are machine
dependent. SeetheCOPY macro. byR andI respectively. These symbols are defined in

5.4. Programming Notes

Programming notes are provided for some macro operations.The notes are intended to point out
special cases, indicate implementation pitfalls, and to provide information about conditions that can be used
to improve the efficiency of the implementation.

6. TheMacros

1. ACOMP (address comparison)

ACOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC

ACOMP is used to compare the address fields of two descriptors.The comparison is arithmetic with
A1 andA2 being considered as signed integers.If A1 > A2, transfer is toGTLOC. If A1 = A2, transfer is
to EQLOC. If A1 < A2, transfer is toLTLOC.

Data Input toACOMP:

DESCR1 A1

DESCR2 A2

- 7 -

Programming Notes:

1. A1 andA2 may be relocatable addresses.

2. SeealsoLCOMP, ACOMPC, AEQL, AEQLC, andAEQLIC.

2. ACOMPC (address comparison with constant)

ACOMPC DESCR,N,GTLOC,EQLOC,LTLOC

ACOMPC is used to compare the address field of a descriptor to a constant.The comparison is
arithmetic withA being considered as a signed integer. If A > N, transfer is toGTLOC. If A = N, transfer
is toEQLOC. If A < N, transfer is toLTLOC.

Data Input toACOMPC:

DESCR A

Programming Notes:

1. A may be a relocatable address.

2. N is never negative.

3. N is often 0.

4. SeealsoACOMP, AEQL, AEQLC, andAEQLIC.

3. ADDLG (add to specifier length)

ADDLG SPEC,DESCR

ADDLG is used to add an integer to the length of a specifier.

Data Input toADDLG:

SPEC L

DESCR I

Data Altered byADDLG:

SPEC L+I

- 8 -

Programming Notes:

1. I is always positive.

4. ADDSIB (add sibling to tree node)

ADDSIB DESCR1,DESCR2

ADDSIB is used to add a tree node as a sibling to another node.

Data Input toADDSIB:

DESCR1 A1

DESCR2 A2 F2 V2

A1+FATHER A3 F3 V3

A1+RSIB A4 F4 V4

A3+CODE I

Data Altered byADDSIB:

A2+RSIB A4 F4 V4

A2+FATHER A3 F3 V3

A1+RSIB A2 F2 V2

A3+CODE I+1

Programming Notes:

1. ADDSIB is only used by compilation procedures.

2. FATHER, RSIB, andCODE are symbols defined in the source program.

3. SeealsoADDSON andINSERT.

- 9 -

5. ADDSON (add son to tree node)

ADDSON DESCR1,DESCR2

ADDSON is used to add a tree node as a son to another node.

Data Input toADDSON:

DESCR1 A1 F1 V1

DESCR2 A2 F2 V2

A1+LSON A3 F3 V3

A1+CODE I

Data Altered byADDSON:

A2+FATHER A1 F1 V1

A2+RSIB A3 F3 V3

.

.

.

A1+LSON A2 F2 V2

A1+CODE I+1

Programming Notes:

1. ADDSON is only used by compilation procedures.

2. FATHER, LSON,RSIB, andCODE are symbols defined in the source program.

3. SeealsoADDSIB andINSERT.

6. ADJUST (compute adjusted address)

ADJUST DESCR1,DESCR2,DESCR3

ADJUST is used to adjust the address field of a descriptor.

- 10 -

Data Input toADJUST:

DESCR2 A2

DESCR3 A3

A2 A4

Data Altered byADJUST:

DESCR1 A3+A4

Programming Notes:

1. A3 is always an address integer.

7. ADREAL (add real numbers)

ADREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

ADREAL is used to add two real numbers.If the result is out of the range available for real
numbers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toADREAL:

DESCR2 R2 F2 V2

DESCR3 R3

Data Altered byADREAL:

DESCR1 R2+R3 F2 V2

Programming Notes:

1. SeealsoDVREAL, EXREAL, MNREAL, MPREAL, andSBREAL.

8. AEQL (addresses equal test)

AEQL DESCR1,DESCR2,NELOC,EQLOC

AEQL is used to compare the address fields of two descriptors.The comparison is arithmetic with
A1 andA2 being considered as signed integers: IfA1 = A2, transfer is toEQLOC. Otherwise transfer is to
NELOC.

- 11 -

Data Input toAEQL:

DESCR1 A1

DESCR2 A2

Programming Notes:

1. A1 andA2 may be relocatable addresses.

2. SeealsoVEQL, AEQLC, LEQLC, AEQLIC, ACOMP, andACOMPC.

9. AEQLC (address equal to constant test)

AEQLC DESCR,N,NELOC,EQLOC

AEQLC is used to compare the address field of a descriptor to a constant.The comparison is
arithmetic withA being considered as a signed integer. If A = N, transfer is toEQLOC. Otherwise
transfer is toNELOC.

Data Input toAEQLC:

DESCR A

Programming Notes:

1. A may be a relocatable address.

2. N is never negative.

3. N is often 0.

4. SeealsoLEQLC, AEQL, AEQLIC, ACOMP, andACOMPC.

10. AEQLIC (address equal to constant indirect test)

AEQLIC DESCR,N1,N2,NELOC,EQLOC

AEQLIC is used to compare an indirectly specified address field of a descriptor to a constant.The
comparison is arithmetic withA1 being considered as a signed integer. If A2 = N2, transfer is toEQLOC.
Otherwise transfer is toNELOC.

- 12 -

Data Input toAEQLIC:

DESCR A1

A1+N1 A2

Programming Notes:

1. A2 may be a relocatable address.

2. N2 is never negative.

3. N1 is always zero.

4. SeealsoAEQL, AEQLC, LEQLC, ACOMP, andACOMPC.

11. APDSP (append specifier)

APDSP SPEC1,SPEC2

APDSP is used to append one specified string to another specified string.

Data Input toAPDSP:

SPEC1 A1 O1 L1

SPEC2 A2 O2 L2

A1+O1 C11 ... C1L1

A2+O2 C21 ... C2L2

Data Altered byAPDSP:

SPEC1 A1 O1 L1+L2

A1+O1 C11 ... C1L1 C21 ... C2L2

Programming Notes:

1. If L1 = 0, C21 is placed atA1+O1.

2. Thestorage followingC1L1 is always adequate forC21...C2L2.

- 13 -

12. ARRAY (assemble array of descriptors)

L ARRAY N

ARRAY is used to assemble an array of descriptors.

Data Assembled byARRAY:

L 0 0 0

.

.

.

L+(N-1)*D 0 0 0

Programming Notes:

1. All fields of all descriptors assembled byARRAY mustbe zero when program execution begins.

13. BKSIZE (get block size)

BKSIZE DESCR1,DESCR2

BKSIZE is used to determine the amount of storage occupied by a block or string structure.The flag
field of the descriptor atA distinguishes between string structures and blocks.If F contains the flagSTTL,
then

F(V)=D*(4+[(V-1)/CPD+1])

where[V] is the integer part ofV andCPD is the number of characters stored per descriptor. The constant
4 occurs because there are 4 descriptors (including the title) in a string structure in addition to the string
itself. Theexpression in brackets represents the number of descriptors required for a string ofV characters.
If F does not contain the flagSTTL, thenF(V) = V+D.

Data Input toBKSIZE:

DESCR2 A

A F V

Data Altered byBKSIZE:

DESCR1 F(V) 0 0

Programming Notes:

1. SeealsoGETLTH.

- 14 -

14. BKSPCE (backspace record)

BKSPCE DESCR

BKSPCE is used to back space one record on the file associated with unit reference numberI.

Data Input toBKSPCE:

DESCR I

Programming Notes:

1. SeealsoENFILE andREWIND.

2. Referto Section 2.1 for a discussion of unit reference numbers.

15. BRANCH (branch to program location)

BRANCH LOC,PROC

BRANCH is used to alter the flow of program control by branching toLOC. If PROC is given, it is
the procedure in whichLOC occurs. IfPROC is omitted,LOC is in the current procedure.

Programming Notes:

1. SeealsoPROC.

16. BRANIC (branch indir ect with offset constant)

BRANIC DESCR,N

BRANIC is used to alter the flow of program control by branching indirectly to the operation at
LOC.

Data Input toBRANIC:

DESCR A

A+N LOC

Programming Notes:

1. N is always zero

- 15 -

17. BUFFER (assemble buffer of blank characters)

LOC BUFFER N

BUFFER is used to assemble a string ofN blank characters.

Data Assembled byBUFFER:

LOC ...

Programming Notes:

1. All characters of the string assembled byBUFFER mustbe blank (not zero) when program execution
begins.

18. CHKVAL (check value)

CHKVAL DESCR1,DESCR2,SPEC,GTLOC,EQLOC,LTLOC

CHKVAL is used to compare an integer to the length of a specifier plus another integer. If L+I2 > I1,
transfer is toGTLOC. If L+I2 = I1, transfer is toEQLOC. If L+I2 < I1, transfer is toLTLOC.

Data Input toCHKVAL:

SPEC L

DESCR1 I1

DESCR2 I2

Programming Notes:

1. I1, I2, andL are always positive integers.

2. CHKVAL is used only in pattern matching.

19. CLERTB (clear syntax table)

CLERTB TABLE,KEY

CLERTB is used to set the indicator fields of all entries of a syntax table to a constant.KEY may be
one of four values:

- 16 -

CONTIN
ERROR
STOP
STOPSH

The indicator field of each entry ofTABLE is set toT whereT is the indicator that corresponds to the
value ofKEY.

Data Altered byCLERTB for ERROR, STOP, or STOPSH:

TABLE T

.

.

.

TABLE+Z*E T

Data Altered byCLERTB for CONTIN:

TABLE TABLE 0

.

.

.

TABLE+Z*E TABLE 0

Programming Notes:

1. SeeSection 4.2.

2. SeealsoPLUGTB.

20. COPY (copy file into assembly)

COPY FILE

COPY is used to copy a file of machine-dependent data into the source program.COPY occurs
three times in the assembly:

COPY MDATA
COPY MLINK
COPY PARMS

MLINK andPARMS are copied at the beginning of the SNOBOL4 assembly. MDATA is copied in the data
region.

MDATA is a file of machine-dependent data.It contains data used in the implementation of the
macros and for strings that depend on the character set of an individual machine or that represent other
problems that prevent a machine-independent representation.These are:

1. ALPHA, a string that consists of all characters arranged in the order of their internal numerical

- 17 -

representation (collating sequence).

2. AMPST, a string consisting of a single ampersand, or whatever character is used to represent the
keyword operator in the source language.

3. COLSTR, a string of two characters consisting of a colon followed by a blank.

4. QTSTR, a string consisting of a single quotation mark, or whatever character is used to represent a
quotation mark in the source language.

These strings of characters are pointed to by the specifiersALPHSP, AMPSP, COLSP, and QTSP
respectively.

MLINK is a file of entry points and external symbol names that describe linkages used to access
machine-language subroutines and I/O packages.

PARMS is a file of machine-dependent constants (equivalences).It contains constants used in the
implementation of the macros and definitions of symbols.These are:

1. ALPHSZ, the number of characters in the character set for the machine.(ALPHSZ is 256 for the IBM
System/360.)

2. CPA, the number of characters per machine addressing unit.(CPA is 1 for the IBM System/360, i.e.,
one character per byte.)

3. DESCR, the address width of a descriptor.

4. FNC, a flag used to identify function descriptors.

5. MARK, a flag used to identify descriptors that are marked titles.

6. PTR, a flag used to identify descriptors pointing into SNOBOL4 dynamic storage.

7. SIZLIM, the value of the largest integer that can be stored in the value field of a descriptor.

8. SPEC, the address width of a specifier.

9. STTL, a flag used to identify descriptors that are titles of string structures.

10. TTL, a flag used to identify descriptors that are titles of blocks.

11. UNITI, the number of the standard input unit.UNITI is 5 for the IBM System/360 implementation.

12. UNITO, the number of the standard print output unit.UNITO is 6 for the IBM System/360
implementation.

13. UNITP, the number of the standard punch output unit.UNITP is 7 for the IBM System/360
implementation.

CSTACK andOSTACK, the current end old stack pointers, respectively, should be defined in one of
theCOPY files. Thesepointers may either be in registers or in the address fields of descriptors, depending
on how the stack management macros are implemented (seePUSH andRCALL, e.g.). If these pointers are
implemented as registers, they should be defined inPARMS. If they are implemented in storage locations,
they should be defined inMDATA.

- 18 -

Programming Notes:

1. COPY may be implemented in a variety of ways.COPY may, for example, simply expand into the
data required, depending on the value of its argument as given above.

2. Anyof theCOPY segments can be used to incorporate other machine-dependent data.

21. CPYPAT (copy pattern)

CPYPAT DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCR6

CPYPAT is used to copy a pattern.First set

R1 = A1
R2 = A2
R3 = A6

whereR1, R2, and R3 are temporary locations.Sections of the pattern are copied for successive values of
R1 andR2. After copying each section, set

R3 = R3-(1+V7)*D

Then set

R1 = R1+(1+V7)*D
R2 = R2+(1+V7)*D

If R3 > 0, continue, copying the next section.Otherwise the operation is complete.The final value ofR1
is inserted in the address field ofDESCR1.

The functionsF1 andF2 are defined as follows:

F1(X) = 0 if X = 0
F1(X) = X+A4 otherwise

F2(X) = A5 if X = 0
F2(X) = X+A4 otherwise

- 19 -

Initial Data Input toCPYPAT:

DESCR1 A1

DESCR2 A2

DESCR3 A3

.

.

.

DESCR4 A4

DESCR5 A5

DESCR6 A6

Data Input toCPYPAT for Successive Values ofR2:

R2+D A7 F7 V7

R2+2D A8 0 V8

R2+3D A9 0 V9

Data Altered byCPYPAT for Successive Values ofR1:

R1+D A7 F7 V7

R1+2D F1(A8) 0 F2(V8)

R1+3D A9+A3 0 V9+A3

Additional Data Input for Successive Values ofR2 if V7 = 3:

R2+4D A10 F10 V10

Additional Data Altered for Successive Values ofR1 if V3 = 7:

R1+4D A10 F10 V10

Data Altered when Copying is Complete:

DESCR1 R1

- 20 -

22. DATE (get date)

DATE SPEC

DATE is used to obtain the current date.A character representation of the current date is placed in
BUFFER.

Data Altered byDATE:

SPEC BUFFER 0 0 0 L

BUFFER C1 ... CL

Programming Notes:

1. Thechoice of representation for the date is not important so far as the source language is concerned.
Thus

April 1, 1981
04/01/81
4:1:81
81.092

are all acceptable.

2. BUFFER is local toDATE and its old contents may be overwritten by a subsequent use ofDATE.

3. DATE is used only in the SNOBOL4DATE function.

4. Implementationof DATE, as such, is not essential.In this case,DATE should set the length ofSPEC
to zero and do nothing else.

23. DECRA (decrement address)

DECRA DESCR,N

DECRA is used to decrement the address field of a descriptor. A is considered as a signed integer.

Data Input toDECRA:

DESCR A

Data Altered byDECRA:

DESCR A-N

- 21 -

Programming Notes:

1. A maybe a relocatable address.

2. N is always positive.

3. N is often 1 orD.

4. A-N may be negative.

5. SeealsoINCRA.

24. DEQL (descriptor equal test)

DEQL DESCR1,DESCR2,NELOC,EQLOC

DEQL is used to compare two descriptors.If A1 = A2, F1 = F2, and V1 = V2, transfer is to
EQLOC. Otherwise transfer is toNELOC.

Data Input toDEQL:

DESCR1 A1 F1 V1

DESCR2 A2 F2 V2

Programming Notes:

1. All fields of the two descriptors must beidenticalfor transfer toEQLOC.

25. DESCR (assemble descriptor)

LOC DESCR A,F,V

DESCR assembles a descriptor with specified address, flag, and value fields.

Data Assembled byDESCR:

LOC A F V

Programming Notes:

1. Any or all of A, F, and V may be omitted.A zero field must be assembled when the corresponding
argument is omitted.

- 22 -

26. DIVIDE (divide integers)

DIVIDE DESCR1,DESCR2,DESCR3,FLOC,SLOC

DIVIDE is used to divide one integer by another. Any remainder is discarded.That is, the result is
truncated, not rounded.If I = 0, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toDIVIDE:

DESCR2 A F V

DESCR3 I

Data Altered byDIVIDE:

DESCR1 A/I F V

Programming Notes:

1. A may be a relocatable address.

27. DVREAL (divide real numbers)

DVREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

DVREAL is used to divide one real number by another. If R3 = 0 or the result is out of the range
available for real numbers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toDVREAL:

DESCR2 R2 F2 V2

DESCR3 R3

Data Altered byDVREAL:

DESCR1 R2/R3 F2 V2

Programming Notes:

1. In addition to use in source-language arithmetic,DVREAL is used in the computation of statistics
published at the end of a SNOBOL4 run.

2. SeealsoADREAL, EXREAL, MNREAL, MPREAL, andSBREAL.

- 23 -

28. END (end assembly)

END

END is used to terminate assembly of the SNOBOL4 system.It occurs only once and is the last card
of the assembly.

29. ENDEX (end execution of SNOBOL4 run)

ENDEX DESCR

ENDEX is used to terminate execution of a SNOBOL4 run.ENDEX is the last instruction executed
and is responsible for returning properly to the environment that initiated the SNOBOL4 run.If I is
nonzero, a post-mortem dump of user core should be given.

Data Input toENDEX:

DESCR I

Programming Notes:

1. If a dump is not given, the keyword&ABEND will not have its specified effect. Nothingelse will be
affected.

2. Onthe IBM System/360, ifI is nonzero, an abend dump is given with a user code ofI.

3. SeealsoINIT.

30. ENFILE (write end of file)

ENFILE DESCR

ENFILE is used to write an end-of-file on (close) the file associated with unit reference numberI.

Data Input toENFILE:

DESCR I

Programming Notes:

1. SeealsoBKSPCE andREWIND.

2. Referto Section 2.1 for a discussion of unit reference numbers.

- 24 -

31. EQU (define symbol equivalence)

SYMBOL EQU N

EQU is used to assign, at assembly time, the value ofN to SYMBOL.

32. EXPINT (exponentiate integers)

EXPINT DESCR1,DESCR2,DESCR3,FLOC,SLOC

EXPINT is used to raise an integer to an integer power. If I1 = 0 and I2 is not positive, or if the
result is out of the range available for integers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toEXPINT:

DESCR2 I1 F V

DESCR3 I2

Data Altered byEXPINT:

DESCR1 I1**I2 F V

33. EXREAL (exponentiate real numbers)

EXREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

EXREAL is used to raise a real number to a real power. If the result is not a real number or is out of
the range available for real numbers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toEXREAL:

DESCR2 R1 F V

DESCR3 R2

Data Altered byEXREAL:

DESCR1 R1**R2 F V

- 25 -

34. FORMAT (assemble format string)

LOC FORMAT ’C1...CL’

FORMAT is used to assemble the characters of a format.

Data Assembled byFORMAT:

LOC C1 ... CL

Programming Notes:

1. The characters assembled byFORMAT are treated as an ‘‘‘ undigested’’’ f ormat by FORTRAN IV
routines.

35. FSHRTN (foreshorten specifier)

FSHRTN SPEC,N

FSHRTN is used to exclude initial characters from a string specification.

Data Input toFSHRTN:

SPEC O L

Data Altered byFSHRTN:

SPEC O+N L-N

Programming Notes:

1. L-N is never negative.

2. SeealsoREMSP.

36. GETAC (get address with offset constant)

GETAC DESCR1,DESCR2,N

GETAC is used to get an address field with an offset constant.

- 26 -

Data Input toGETAC:

DESCR2 A2

A2+N A

Data Altered byGETAC:

DESCR1 A

Programming Notes:

1. N may be negative.

2. SeealsoPUTAC, GETDC, andPUTDC.

37. GETBAL (get parenthesis balanced string)

GETBAL SPEC,DESCR,FLOC,SLOC

GETBAL is used to get the specification of a balanced substring.The string starting atCL+1 and
ending atCL+N is examined to determine the shortest balanced substringCL+1,...,CL+J. J is determined
according to the following rules:

If CL+1 is not a parenthesis, thenJ = 1.

If CL+1 is a left parenthesis, thenJ is the least integer such thatCL+1...CL+J is balanced with respect to
parentheses in the usual algebraic sense.

If CL+1 is a right parenthesis, or if no such balanced string exists, transfer is toFLOC. OtherwiseSPEC
is modified as indicated and transfer is toSLOC.

Data Input toGETBAL:

SPEC A O L

DESCR N

A+O C1 ... CL CL+1 ... CL+N

Data Altered byGETBAL:

SPEC A O L+J

- 27 -

38. GETD (get descriptor)

GETD DESCR1,DESCR2,DESCR3

GETD is used to get a descriptor.

Data Input toGETD:

DESCR2 A2

DESCR3 A3

A2+A3 A F V

Data Altered byGETD:

DESCR1 A F V

Programming Notes:

1. SeealsoGETDC, PUTD, andPUTDC.

39. GETDC (get descriptor with offset constant)

GETDC DESCR1,DESCR2,N

GETDC is used to get a descriptor with an offset constant.

Data Input toGETDC:

DESCR2 A2

A2+N A F V

Data Altered byGETDC:

DESCR1 A F V

Programming Notes:

1. SeealsoGETD, PUTDC, andPUTD.

- 28 -

40. GETLG (get length of specifier)

GETLG DESCR,SPEC

GETLG is used to get the length of a specifier.

Data Input toGETLG:

SPEC L

Data Altered byGETLG:

DESCR L 0 0

Programming Notes:

1. SeealsoPUTLG.

41. GETLTH (get length for string structure)

GETLTH DESCR1,DESCR2

GETLTH is used to determine the amount of storage required for a string structure.The amount of
storage is given by the formula

F(L)=D*(3+[(L-1)/CPD+1])

where[L] is the integer part ofL andCPD is the numbers of characters stored per descriptor. The constant
3 accounts for the three descriptors in a string structure in addition to the string itself.The expression in
brackets represents the number of descriptors required for a string ofL characters.

Data Input toGETLTH:

DESCR2 L

Data Altered byGETLTH:

DESCR1 F(L) 0 0

Programming Notes:

1. SeealsoBKSIZE.

- 29 -

42. GETSIZ (get size)

GETSIZ DESCR1,DESCR2

GETSIZ is used to get the size from the value field of a title descriptor.

Data Input toGETSIZ:

DESCR2 A

A V

Data Altered byGETSIZ:

DESCR1 V 0 0

Programming Notes:

1. SeealsoSETSIZ.

43. GETSPC (get specifier with constant offset)

GETSPC SPEC,DESCR,N

GETSPC is used to get a specifier.

Data Input toGETSPC:

DESCR A1

A1+N A F V O L

Data Altered byGETSPC:

SPEC A F V O L

Programming Notes:

1. SeealsoPUTSPC.

- 30 -

44. INCRA (increment address)

INCRA DESCR,N

INCRA is used to increment the address field of a descriptor.

Data Input toINCRA:

DESCR A

Data Altered byINCRA:

DESCR A+N

Programming Notes:

1. A may be a relocatable address.

2. A is never negative.

3. N is always positive.

4. N is often 1 orD.

5. SeealsoDECRA andINCRV.

45. INCRV (increment value field)

INCRV DESCR,N

INCRV is used to increment the value field of a descriptor. I is considered as an unsigned
(nonnegative) integer.

Data Input toINCRV:

DESCR I

Data Altered byINCRV:

DESCR I+N

- 31 -

Programming Notes:

1. N is always positive.

2. N is often 1.

3. SeealsoINCRA.

46. INIT (initialize SNOBOL4 run)

INIT

INIT is used to initialize a SNOBOL4 run.INIT is the first instruction executed and is responsible for
performing any initialization necessary. The operation is machine and system dependent.Typically, INIT
sets program masks and the values of vertain registers.

In addition to any initialization required for a particular system and machine,INIT also performs the
following initialization for the SNOBOL4 system.Dynamic storage is initialized.The address fields of
FRSGPT andHDSGPT are set to point to the first descriptor in dynamic storage.The address field of
TLSGP1 is set to the first descriptor past the end of dynamic storage.Space for dynamic storage may be
preallocated or obtained from the operating system byINIT. The timer is initialized for subsequent use by
theMSTIME macro (q.v.).

Programming Notes:

1. SeealsoENDEX.

47. INSERT (insert node in tree)

INSERT DESCR1,DESCR2

INSERT is used to insert a tree node above another node.

Data Input toINSERT:

DESCR1 A1 F1 V1

DESCR2 A2 F2 V2

A1+FATHER A3 F3 V3

A3+LSON A4 F4 V4

A2+CODE I

- 32 -

Data Altered byINSERT:

A1+FATHER A2 F2 V2

A4+RSIB A2 F2 V2

A2+FATHER A3 F3 V3

A2+LSON A1 F1 V1

A2+CODE I+1

Programming Notes:

1. Sincethe fields of the descriptor atA1+FATHER are used in the data to be altered, care should be
taken not to modify this descriptor until its former values have been used.

2. INSERT is only used by compilation procedures.

3. FATHER, LSON, RSIB, andCODE are symbols defined in the source program.

4. SeealsoADDSIB andADDSON.

48. INTRL (convert integer to real number)

INTRL DESCR1,DESCR2

INTRL is used to convert a (signed) integer to a real number. R(I) is the real number corresponding
to I.

Data Input toINTRL:

DESCR2 I

Data Altered byINTRL:

DESCR1 R(I) 0 R

Programming Notes:

1. R is a symbol defined in the source program and is the code for the real data type.

- 33 -

49. INTSPC (convert integer to specifier)

INTSPC SPEC,DESCR

INTSPC is used to convert a (signed) integer to a specified string.

Data Input toINTSPC:

DESCR I

Data Altered byINTSPC:

SPEC BUFFER 0 0 O L

BUFFER+O C1 ... CL

Programming Notes:

1. C1...CL should be a ‘‘‘ normalized’’’ string corresponding to the integerI. That is, it should contain no
leading zeroes and should begin with a minus sign ifI is negative.

2. BUFFER is local toINTSPC and its contents may be overwritten by a subsequent use ofINTSPC.

3. SeealsoSPCINT.

50. ISTACK (initialize stack)

ISTACK

ISTACK is used to initialize the system stack.

Data Altered byISTACK:

OSTACK 0

CSTACK STACK

Programming Notes:

1. STACK is a program symbol whose value is the address of the first descriptor of the system stack.

2. SeealsoPSTACK, RCALL, andRRTURN.

- 34 -

51. LCOMP (length comparison)

LCOMP SPEC1,SPEC2,GTLOC,EQLOC,LTLOC

LCOMP is used to compare the lengths of two specifiers.If L1 > L2, transfer is toGTLOC. If L1 =
L2, transfer is toEQLOC. If L1 < L2, transfer is toLTLOC.

Data Input toLCOMP:

SPEC1 L1

SPEC2 L2

Programming Notes:

1. SeealsoACOMP, RCOMP, andLEQLC.

52. LEQLC (length equal to constant test)

LEQLC SPEC,N,NELOC,EQLOC

LEQLC is used to compare the length of a specifier to a constant.If L = N, transfer is toEQLOC.
Otherwise transfer is toNELOC.

Data Input toLEQLC:

SPEC L

Programming Notes:

1. L andN are never negative.

2. SeealsoLCOMP, AEQLC, andAEQLIC.

53. LEXCMP (lexical comparison of strings)

LEXCMP SPEC1,SPEC2,GTLOC,EQLOC,LTLOC

LEXCMP is used to compare two strings lexicographically (i.e.according to their alphabetical
ordering). IfC11...C1N1 < C21...C2M, transfer is toGTLOC. If C11...C1N1 = C21...C2M, transfer is
to EQLOC. If C11...C1N1 > C21...C2M, transfer is toLTLOC.

- 35 -

Data Input toLEXCMP:

SPEC1 A1 O1 N

SPEC2 A2 O2 M

A1+O1 C11 ... C1N

A2+O2 C21 ... C2M

Programming Notes:

1. Thelexicographical ordering is machine dependent and is determined by the numerical order of the
internal representation of the characters for a particular machine.

2. A string that is an initial substring of another string is lexicographically less than that string.That is
ABC is less thanABCA.

3. Thenull (zero-length) string is lexicographically less than any other string.

4. Two strings are equal if and only if they are of the same length and are identical character by character.

5. By far the most frequent use ofLEXCMP is to determine whether two strings are the same or different.
In these casesGTLOC and LTLOC will specify the same location or both be omitted.Because of the
frequency of such use, it is desirable to handle this case specially, since a test for equality usually can be
performed more efficiently than the general test.

54. LHERE (define location here)

LOC LHERE

LHERE is used to establish the equivalence ofLOC as the location of the next program instruction.

Programming Notes:

1. LHERE is equivalent to the familiarEQU *. Similarly

LOC LHERE
OP

is equivalent to

LOC OP

- 36 -

55. LINK (link to external function)

LINK DESCR1,DESCR2,DESCR3,DESCR4,FLOC,SLOC

LINK is used to link to an external function.A2 is a pointer to an argument list ofN descriptors.A4
is the address of the external function to be called.V1 is the date type expected for the resulting value.
The returned value is placed inDESCR1. If the external function signals failure, transfer is toFLOC.
Otherwise transfer is toSLOC.

Data Input toLINK:

DESCR1 V1

DESCR2 A2

DESCR3 N

DESCR4 A4

Data Altered byLINK:

DESCR1 A F V

Programming Notes:

1. LINK is a system-dependent operation.

2. LINK need not be implemented ifLOAD is not. In this case,LINK should branch toINTR10.

3. SeealsoLOAD andUNLOAD.

56. LINKOR (link ‘ ‘‘ or ’’’ fi elds of pattern nodes)

LINKOR DESCR1,DESCR2

LINKOR links through ‘‘‘ or ’’’ (alternative) fields of pattern nodes until the end, indicated by a zero
field, is reached.This zero field is replaced byI.

- 37 -

Data Input toLINKOR:

DESCR1 A

DESCR2 I

A+2D I1

A+2D+I1 I2

.

.

.

A+2D+IN 0

Data Altered byLINKOR:

A+2D+IN I

57. LOAD (load external function)

LOAD DESCR,SPEC1,SPEC2,FLOC,SLOC

LOAD is used to load an external function.C11...C1L1 is the name of the external function to be
loaded from a library. C21...C2L2 is the name of the library. A3 is the address of the entry point.If the
external function is loaded, transfer is toSLOC. Otherwise transfer is toFLOC.

Data Input toLOAD:

SPEC1 A1 O1 L1

SPEC2 A2 O2 L2

A1+O1 C11 ... C1L1

A2+O2 C21 ... C2L2

Data Altered byLOAD:

DESCR A3

- 38 -

Programming Notes:

1. LOAD is a system-dependent operation.

2. LOAD need not be implemented as such.If it is not, the built-in functionLOAD will not be available,
and an error comment should be generated by branching toUNDF.

3. On the IBM System/360,LOAD uses the OS macro LOAD to bring an external function from the
library whose DDNAME is specified byC21...C2L2.

4. SeealsoLINK andUNLOAD.

58. LOCAPT (locate attribute pair by type)

LOCAPT DESCR1,DESCR2,DESCR3,FLOC,SLOC

LOCAPT is used to locate the ‘‘‘ type’’’ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are in ‘‘‘ type-value’’’ pairs. Odd-numbereddescriptors are ‘‘‘ type’’’
descriptors. Thelist starting atA+D is searched, comparing descriptors atA+D, A+3D, ... for the first
descriptor whose value is equal to the value ofDESCR3. If a descriptor equal toDESCR3 is not found,
transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toLOCAPT:

DESCR2 A F V

DESCR3 A3 F3 V3

A 2K*D

A+D A11 F11 V11

.

.

.

A+D+2I*D A3 F3 V3

.

.

.

A+2K*D

Data Altered byLOCAPT:

DESCR1 A+2I*D F V

- 39 -

Programming Notes:

1. Notethat the address ofDESCR1 is set to one descriptor less then the descriptor that is located.

2. SeealsoLOCAPV.

59. LOCAPV (locate attribute pair by value)

LOCAPV DESCR1,DESCR2,DESCR3,FLOC,SLOC

LOCAPV is used to locate the ‘‘‘ value’’’ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are in ‘‘‘ type-value’’’ pairs. Even-numbereddescriptors are ‘‘‘ value’’’
descriptors. Thelist starting atA+D is searched, comparing descriptors atA+2D, A+4D, ... for the first
descriptor whose value is equal to the value ofDESCR3. If a descriptor equal toDESCR3 is not found,
transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toLOCAPV:

DESCR2 A F V

DESCR3 A3 F3 V3

A 2K*D

A+2D A12 F12 V12

.

.

.

A+2D+2I*D A3 F3 V3

.

.

.

A+2K*D

Data Altered byLOCAPV:

DESCR1 A+2I*D F V

Programming Notes:

1. Notethat the address ofDESCR1 is set to two descriptors less than the descriptor that is located.

2. SeealsoLOCAPT.

- 40 -

60. LOCSP (locate specifier to string)

LOCSP SPEC,DESCR

LOCSP is used to obtain a specifier to a string given in a string structure.CPD is the number of
characters per descriptor.

Data Input toLOCSP:

DESCR A F V

A I

Data Altered byLOCSP if A ≠ O:

SPEC A F V 4*CPD I

Data Altered byLOCSP if A = O:

SPEC 0

Programming Notes:

1. If A = O, the value ofDESCR represents the null (zero-length) string and is handled as a special case
as indicated.The other fields ofSPEC are unchanged in this case.

61. LVALUE (get least length value)

LVALUE DESCR1,DESCR2

LVALUE is used to get the least value of address fields in a chain of pattern nodes.The address field
of DESCR1 is set toI where

I = min(I0,...,IK)

- 41 -

Data Input toLVALUE:

DESCR2 A

A+2D N1

A+3D I0

A+N1+2D N2

A+N1+3D I1

.

.

.

A+NK+2D 0

A+NK+3D IK

Data Altered byLVALUE:

DESCR1 I 0 0

Programming Notes:

1. I0,...,IK are all nonnegative.

2. A is never zero, butN1 may be.

62. MAKNOD (make pattern node)

MAKNOD DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCR6

MAKNOD is used to make a node for a pattern.DESCR6 may be omitted.If it is, one less
descriptor is modified, but the two forms are otherwise the same.

Data Input toMAKNOD:

DESCR2 A2 F2 V2

DESCR3 A3

DESCR4 A4

DESCR5 A5 F5 V5

- 42 -

Additional Data Input ifDESCR6 is Given:

DESCR6 A6 F6 V6

Data Altered byMAKNOD:

DESCR1 A2 F2 V2

A2+D A5 F5 V5

A2+2D A4

A2+3D A3

Additional Data Altered ifDESCR6 is Given:

A2+4D A6 F6 V6

Programming Notes:

1. As indicated, there are two forms ofMAKNOD. If DESCR6 is given, an additional descriptor if
modified, but otherwise the two forms are the same.

2. DESCR1 must be changedlast, sinceDESCR6 may be the same descriptor asDESCR1.

3. MAKNOD is used only for constructing patterns.

63. MNREAL (minus real number)

MNREAL DESCR1,DESCR2

MNREAL is used to change the sign of a real number.

Data Input toMNREAL:

DESCR2 R F V

Data Altered byMNREAL:

DESCR1 -R F V

Programming Notes:

1. R may be negative.

2. SeealsoMNSINT, ADREAL, DVREAL, EXREAL, MPREAL, andSBREAL.

- 43 -

64. MNSINT (minus integer)

MNSINT DESCR1,DESCR2,FLOC,SLOC

MNSINT is used to change the sign of an integer. If -I exceeds the maximum integer, transfer is to
FLOC. Otherwise transfer is toSLOC.

Data Input toMNSINT:

DESCR2 I F V

Data Altered byMNSINT:

DESCR1 -I F V

Programming Notes:

1. I may be negative.

2. SeealsoMNREAL.

65. MOVA (move address)

MOVA DESCR1,DESCR2

MOVA is used to move an address field from one descriptor to another.

Data Input toMOVA:

DESCR2 A

Data Altered byMOVA:

DESCR1 A

Programming Notes:

1. SeealsoMOVD andMOVV.

- 44 -

66. MOVBLK (move block of descriptors)

MOVBLK DESCR1,DESCR2,DESCR3

MOVBLK is used to move (copy) a block of descriptors.

Data Input toMOVBLK:

DESCR1 A1

DESCR2 A2

DESCR3 D*N

A2+D A21 F21 V21

.

.

.

A2+(D*N) A2N F2N V2N

Data Altered byMOVBLK:

A1+D A21 F21 V21

.

.

.

A1+(D*N) A2N F2N V2N

Programming Notes:

1. Notethat the descriptor atA1 is not altered.

2. Thearea into which the move is made may overlap the area from which the move is made.This only
occurs whenA1 is less thanA2. Care must be taken to handle this case correctly.

67. MOVD (move descriptor)

MOVD DESCR1,DESCR2

MOVD is used to move (copy) a descriptor from one location to another.

- 45 -

Data Input toMOVD:

DESCR2 A F V

Data Altered byMOVD:

DESCR1 A F V

Programming Notes:

1. SeealsoMOVA andMOVV.

68. MOVDIC (move descriptor indirect with constant offset)

MOVDIC DESCR1,N1,DESCR2,N2

MOVDIC is used to move a descriptor that is indirectly specified with an offset constant.

Data Input toMOVDIC:

DESCR1 A1

DESCR2 A2

A2+N2 A F V

Data Altered byMOVDIC:

A1+N1 A F V

Programming Notes:

1. SeealsoMOVD, GETDC, andPUTDC.

69. MOVV (move value field)

MOVV DESCR1,DESCR2

MOVV is used to move a value field from one descriptor to another.

Data Input toMOVV:

DESCR2 V

- 46 -

Data Altered byMOVV:

DESCR1 V

Programming Notes:

1. SeealsoMOVA andMOVD.

70. MPREAL (multiply r eal numbers)

MPREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

MPREAL is used to multiply two real numbers.If the result is out of the range available for real
numbers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toMPREAL:

DESCR2 R2 F2 V2

DESCR3 R3

Data Altered byMPREAL:

DESCR1 R2*R3 F2 V2

Programming Notes:

1. SeealsoADREAL, DVREAL, EXREAL, MNREAL, andSBREAL.

71. MSTIME (get millisecond time)

MSTIME DESCR

MSTIME is used to get the millisecond time.

Data Altered byMSTIME:

DESCR TIME 0 0

- 47 -

Programming Notes:

1. Theorigin with respect to which the time is obtained is not important.The SNOBOL4 system deals
only with differences in times.

2. Thetime units should be milliseconds, but accuracy is not critical.

3. MSTIME is used in program tracing, the SNOBOL4TIME function, and in statistics printed upon
termination of a SNOBOL4 run.

4. It is not critically important thatMSTIME be implemented as such.If it is not, the address field of
DESCR should be set to zero also.

5. SeealsoINIT.

72. MULT (multiply integers)

MULT DESCR1,DESCR2,DESCR3,FLOC,SLOC

MULT is used to multiply two integers.In the event of overflow, transfer is toFLOC. Otherwise,
transfer is toSLOC.

Data Input toMULT:

DESCR2 I2 F2 V2

DESCR3 I3

Data Altered byMULT:

DESCR1 I2*I3 F2 V2

Programming Notes:

1. Thetest for success and failure is used in only two calls of this macro.Hence the code to make the
check is not needed in most cases.

2. DESCR1 andDESCR2 are often the same.

3. SeealsoMULTC andDIVIDE.

- 48 -

73. MULTC (multiply addr ess by constant)

MULTC DESCR1,DESCR2,N

MULTC is used to multiply an integer by a constant.

Data Input toMULTC:

DESCR2 I

Data Altered byMULTC:

DESCR1 I*N 0 0

Programming Notes:

1. I*N never exceeds the range available for integers.

2. DESCR1 andDESCR2 are often the same.

3. N is oftenD, which typically may be implemented by a shift, or simply by no operation ifD is 1 for a
particular machine.

4. SeealsoMULT.

74. ORDVST (order variable storage)

ORDVST

ORDVST is used to alphabetically order variables in SNOBOL4 dynamic storage.Variables are
organized in a number of bins, each bin containing a linked list of variables as shown below.
OBEND = OBSTRT+(OBSIZ-1)*D, whereOBSIZ is the number of bins and is defined in the source
program.

Bins of Variables:

OBSTRT A1

OBSTRT+D A2

.

.

.

OBEND AN

The addressesA1, A2, ..., AN point to the first variable in each bin.A zero value for any of these addresses
indicates there are no variables in that bin.Within each bin, variables are linked together.

- 49 -

Relevant Parts of a Variable:

A L

A+3*D A1

A+4+D C1

.

.

.

L is the length of the string.The string itself begins atA+4*D and occupies as many descriptor
locations as are necessary. A1 is a link to the next variable in the bin.A zero value ofA1 indicates the end
of the chain for that bin.

Programming Notes:

1. ORDVST is used only in ordering variables for a programmer-requested post-mortem dump of
variable storage.ORDVST need not be implemented as such, but may simply perform no operation.In
this case, the post-mortem dump will not be alphabetized, but will be otherwise correct.

2. If ORDVST is implemented, it is easiest to put all variables in one long chain starting atOBSTRT.
The address fields of the descriptorsOBSTRT+D,...,OBSTRT+(OBSIZ-1)*D should then be set to zero.

3. Sincedynamic storage may contain many variables, some care must be taken to assure that the sorting
procedure is not excessively slow. Variables whose values are the null string (zero address field and value
field containing the program symbolS) should be omitted from the sort.

4. Sinceany character may appear in a string, the value ofI must be used to determine the length of the
string in a variable — characters following the string in the last descriptor are undefined.

75. OUTPUT (output record)

OUTPUT DESCR,FORMAT,(DESCR1,...,DESCRN)

OUTPUT is used to output a list of items according toFORMAT. The output is put on the file
associated with unit reference numberI. The formatC1...CL may specify literals and the conversion of
integers and real numbers given in the address fieldsA1,...,AN.

- 50 -

Data Input toOUTPUT:

DESCR I

FORMAT C1 ... CL

DESCR1 A1

.

.

.

DESCRN AN

Programming Notes:

1. SeealsoSTPRNT.

76. PLUGTB (plug syntax table)

PLUGTB TABLE,KEY,SPEC

PLUGTB is used to set selected indicator fields in the entries of a syntax table to a constant.KEY
may be one of four values:

CONTIN
ERROR
STOP
STOPSH

The indicator fields of entries corresponding toC1,...,CL are set toT where T is the indicator that
corresponds to the value ofKEY.

Data Input toPLUGTB:

SPEC A O L

A+O C1 ... CL

Data Altered byPLUGTB for ERROR, STOP, or STOPSH:

TABLE+E*C1 T

.

.

.

TABLE+E*CL T

- 51 -

Data Altered byPLUGTB for CONTIN:

TABLE+E*C1 TABLE 0

.

.

.

TABLE+E*CL TABLE 0

Programming Notes:

1. SeeSection 4.2.

2. SeealsoCLERTB.

77. POP (pop descriptors from stack)

POP (DESCR1,...,DESCRN)

POP is used to pop a list of descriptors off the system stack.

Data Input toPOP:

CSTACK A

A A1 F1 V1

.

.

.

A-D*(N-1) AN FN VN

Data Altered byPOP:

CSTACK A-(N*D)

DESCR1 A1 F1 V1

.

.

.

DESCRN AN FN VN

- 52 -

Programming Notes:

1. If A-(N*D) < STACK, stack underflow occurs.This condition indicates a programming error in the
implementation of the macro language.An appropriate diagnostic message indicating an error may be
obtained by transferring to the program locationINTR10 if the condition is detected.

78. PROC (procedure entry)

LOC1 PROC LOC2

PROC is used to identify a procedure entry point.LOC2 may be omitted, in which caseLOC1 is
the primary procedure entry point.If LOC2 is given,LOC1 is a secondary entry point in the procedure
with primary entry pointLOC2.

Programming Notes:

1. Procedureentry points are referred to byRCALL, BRANIC, and BRANCH (in its two-argument
form).

2. In most implementations,PROC has no functional use and may be implemented asLHERE. For
machines that have a severely limited program basing range (such as the IBM System/360),PROC may be
used to perform required basing operations.

79. PSTACK (post stack position)

PSTACK DESCR

PSTACK is used to post the current stack position.

Data Input toPSTACK:

CSTACK A

Data Altered byPSTACK:

DESCR A-D 0 0

Programming Notes:

1. SeealsoISTACK.

- 53 -

80. PUSH (push descriptors onto stack)

PUSH (DESCR1,...,DESCRN)

PUSH is used to push a list of descriptors onto the system stack.

Data Input toPUSH:

CSTACK A

DESCR1 A1 F1 V1

.

.

.

DESCRN AN FN VN

Data Altered byPUSH:

CSTACK A+(D*N)

A+D A1 F1 V1

.

.

.

A+(D*N) AN FN VN

Programming Notes:

1. If A+(D*N) > STACK+STSIZE, stack overflow occurs.Transfer should be made to the program
locationOVER, which will result in an appropriate error termination.

2. SeealsoSPUSH, POP, andSPOP.

81. PUTAC (put address with offset constant)

PUTAC DESCR1,N,DESCR2

PUTAC is used to put an address field into a descriptor located at a constant offset.

- 54 -

Data Input toPUTAC:

DESCR1 A1

DESCR2 A2

Data Altered byPUTAC:

A1+N A2

Programming Notes:

1. SeealsoGETAC, PUTVC, PUTD, andPUTDC.

82. PUTD (put descriptor)

PUTD DESCR1,DESCR2,DESCR3

PUTD is used to put a descriptor.

Data Input toPUTD:

DESCR1 A1

DESCR2 A2

DESCR3 A F V

Data Altered byPUTD:

A1+A2 A F V

Programming Notes:

1. SeealsoPUTDC, PUTAC, PUTVC, andGETD.

83. PUTDC (put descriptor with constant offset)

PUTDC DESCR1,N,DESCR2

PUTDC is used to put a descriptor at a location with a constant offset.

- 55 -

Data Input toPUTDC:

DESCR1 A1

DESCR2 A F V

Data Altered byPUTDC:

A1+N A F V

Programming Notes:

1. SeealsoPUTD, PUTAC, PUTVC, andGETD.

84. PUTLG (put specifier length)

PUTLG SPEC,DESCR

PUTLG is used to put a length into a specifier.

Data Input toPUTLG:

DESCR I

Data Altered byPUTLG:

SPEC I

Programming Notes:

1. I is always nonnegative.

2. SeealsoGETLG.

85. PUTSPC (put specifier with offset constant)

PUTSPC DESCR,N,SPEC

PUTSPC is used to put a specifier.

- 56 -

Data Input toPUTSPC:

DESCR A1

SPEC A F V O L

Data Altered byPUTSPC:

A1+N A F V O L

Programming Notes:

1. SeealsoGETSPC.

86. PUTVC (put value field with offset constant)

PUTVC DESCR1,N,DESCR2

PUTVC is used to put a value field into a descriptor at a location with a constant offset.

Data Input toPUTVC:

DESCR1 A

DESCR2 V

Data Altered byPUTVC:

A+N V

Programming Notes:

1. SeealsoPUTAC, PUTDC, andPUTD.

87. RCALL (recursive call)

RCALL DESCR,PROC,(DESCR1,...,DESCRN),(LOC1,...,LOCM)

RCALL is used to perform a recursive call.DESCR is the descriptor that receives the value upon
return from the call.PROC is the procedure being called.DESCR1,...,DESCRN are descriptors whose
values are passed toPROC. LOC1,...,LOCM are locations to transfer to upon return according to the
return exit signaled.The old stack pointer (A0) is saved on the stack, the current stack pointer becomes the
old stack pointer, and a new current stack pointer is generated as indicated.The return locationLOC is
saved on the stack so that the return can be properly made.The values of the arguments
DESCR1,...,DESCRN are placed on the stack.Note that their order is theoppositeof the order that

- 57 -

would be obtained by usingPUSH.

At the return locationLOC, code similar to that shown should be assembled.OP represents an
instruction that stores the value returned byPROC in DESCR.

Data Input toRCALL:

CSTACK A

OSTACK A0

DESCR1 A1 F1 V1

.

.

.

DESCRN AN FN VN

Data Altered byRCALL:

A+D A0 0 0

A+2D LOC 0 0

A+3D AN FN VN

.

.

.

A+D*(2+N) A1 F1 V1

CSTACK A+(2+N)*D

OSTACK A

Return Code atLOC:

LOC OP DESCR1
BRANCH LOC1

.

.

.
BRANCH LOCM

- 58 -

Programming Notes:

1. RCALL andRRTURN are used in combination, and their relation to each other must be thoroughly
understood in order to implement them correctly.

2. OrdinarilyOP is an instruction to store the value returned byRRTURN.

3. DESCR sometimes is omitted.In this case, any value returned byRRTURN is ignored andOP
should perform no operation.

4. (DESCR1,...,DESCRN) sometimes is entirely omitted.In this caseN should be taken to be zero in
interpreting the figures.

5. Any of the locationsLOC1,...,LOCM may be omitted.As in the case of operations with omitted
conditional branches, control then passes to the operation following theRCALL.

6. The return indicated byRRTURN may beM+1, in which case control is passed to the operation
following theRCALL.

7. Thereturn indicated byRRTURN is never greater thanM+1.

8. RCALL typically must save program state information.On the IBM System/360, this consists of the
location LOC and a base register for the procedure containing theRCALL. This information is pushed
onto the stack.In pushing information onto the stack, care must be taken to observe the rules concerning
the use of descriptors.The rest of the SNOBOL4 system treats the stack as descriptors, and the flag fields
of descriptors used to save program state informationmust be set to zero.

9. SeealsoSELBRA.

88. RCOMP (real comparison)

RCOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC

RCOMP is used to compare two real numbers.If R1 > R2, transfer is toGTLOC. If R1 = R2,
transfer is toGTLOC. If R1 < R2, transfer is toLTLOC.

Data Input toRCOMP:

DESCR1 R1

DESCR2 R2

Programming Notes:

1. SeealsoACOMP andLCOMP.

- 59 -

89. REALST (convert real number to string)

REALST SPEC,DESCR

REALST is used to convert a real number into a specified string.

Data Input toREALST:

DESCR R

Data Altered byREALST:

SPEC BUFFER 0 0 0 L

BUFFER C1 ... CL

Programming Notes:

1. C1...CL should represent the real numberR in the SNOBOL4 fashion, containing a decimal point and
having at least one digit before the decimal point, zeroes being added as necessary. If R is negative, the
string should begin with a minus sign.For compatibility with real literals and data type conversions, the
real number should not be represented in exponent form, although very large or small real numbers may
require a large number of characters for their representation otherwise.

2. Thenumber of digits (and hence the size ofBUFFER) required is machine dependent and depends on
the range available for real numbers.

3. BUFFER is local toREALST and its contents may be overwritten by a subsequent use ofREALST.

4. SeealsoINTSPC andSPREAL.

90. REMSP (specify remaining string)

REMSP SPEC1,SPEC2,SPEC3

REMSP is used to obtain a remainder specifier resulting from the deletion of a specified length at the
end.

Data Input toREMSP:

SPEC2 A2 F2 V2 O2 L2

SPEC3 L3

- 60 -

Data Altered byREMSP:

SPEC1 A2 F2 V2 O2+L3 L2-L3

Programming Notes:

1. SPEC1 andSPEC3 may be the same.

2. L2-L3 is never negative.

3. SeealsoFSHRTN.

91. RESETF (reset flag)

RESETF DESCR,FLAG

RESETF is used to reset (delete) a flag from a descriptor.

Data Input toRESETF:

DESCR F

Data Altered byRESETF:

DESCR F-FLAG

Programming Notes:

1. OnlyFLAG is removed from the flags inF. Any other flags are left unchanged.

2. If F does not containFLAG, no data is altered.

3. SeealsoRSETFI andSETFI.

92. REWIND (rewind file)

REWIND DESCR

REWIND is used to rewind the file associated with the unit reference numberI.

Data Input toREWIND:

DESCR I

- 61 -

Programming Notes:

1. Referto Section 2.1 for a discussion of unit reference numbers.

2. SeealsoBKSPCE andENFILE.

93. RLINT (convert real number to integer)

RLINT DESCR1,DESCR2,FLOC,SLOC

RLINT is used to convert a real number to an integer. If the magnitude ofR exceeds the magnitude
of the largest integer, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toRLINT:

DESCR2 R

Data Altered byRLINT:

DESCR1 I(R) 0 I

Programming Notes:

1. I(R) is the integer equivalent of the real numberR.

2. Thefractional part ofR is discarded.

3. I is a symbol defined in the source program and is the code for the integer data type.

94. RPLACE (replace characters)

RPLACE SPEC1,SPEC2,SPEC3

RPLACE is used to replace characters in a string.SPEC2 specifies a set of characters to be
replaced. SPEC3 specifies the replacement to be made for the characters specified bySPEC2. The
replacement is described by the following rules.For I = 1,...,L

F(CI) = CI if CI ≠ C2J for anyJ (1 ≤ J ≤ L2)
F(CI) = C3J if CI = C2J for someJ (1 ≤ J ≤ L2)

- 62 -

Data Input toRPLACE:

SPEC1 A1 O1 L

SPEC2 A2 O2 L2

SPEC3 A3 O3 L2

.

.

.

A1+O1 C1 ... CL

A2+O2 C21 ... C2L2

A3+O3 C31 ... C3L2

Data Altered byRPLACE:

A1+O1 F(C1) ... F(CL)

Programming Notes:

1. L may be zero.

2. If there are duplicate characters inC21...C2L2, replacement should be made corresponding to the last
instance of the character. That is, if

C2I = C2J = ... = C2K (I < J < K)

then

F(CI) = C3K

3. RPLACE is used only in the SNOBOL4REPLACE function. It is not essential thatRPLACE be
implemented as such.If it is not, RPLACE should transfer toUNDF to provide an appropriate error
comment.

95. RRTURN (recursive return)

RRTURN DESCR,N

RRTURN is used to return from a recursive call.DESCR is the descriptor whose value is returned.
The stack pointers are repositioned as shown.At the locationLOC, code similar to that shown is
assembled by theRRCALL to which return is to be made.OP represents an instruction that is used by
RRTURN to return the value ofDESCR. Control is transferred toLOCN corresponding toN given in the
RRTURN.

- 63 -

Data Input toRRTURN:

OSTACK A

A+D A0

A+2D LOC

DESCR A1 F1 V1

Data Altered byRRTURN:

CSTACK A

OSTACK A0

DESCR1 A1 F1 V1

Return Code atLOC:

LOC OP DESCR1
BRANCH LOC1

.

.

.
BRANCH LOCM

Programming Notes:

1. RCALL andRRTURN are used in combination, and their relation to each other must be thoroughly
understood.

2. DESCR may be omitted.In this case,OP should not be executed.

96. RSETFI (reset flag indirect)

RSETFI DESCR,FLAG

RSETFI is used to reset (delete) a flag from a descriptor that is specified indirectly.

Data Input toRSETFI:

DESCR A

A F

- 64 -

Data Altered byRSETFI:

A F-FLAG

Programming Notes:

1. OnlyFLAG is removed from the flags inF. Any other flags are left unchanged.

2. If F does not containFLAG, no data is altered.

3. SeealsoRESETF andSETFI.

97. SBREAL (subtract real numbers)

SBREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

SBREAL is used to subtract one real number from another. If the result is out of the range available
for real numbers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toSBREAL:

DESCR2 R2 F2 V2

DESCR3 R3

Data Altered bySBREAL:

DESCR1 R2-R3 F2 V2

Programming Notes:

1. SeealsoADREAL, DVREAL, EXREAL, MNREAL, andMPREAL.

98. SELBRA (select branch point)

SELBRA DESCR,(LOC1,...,LOCN)

SELBRA is used to alter the flow of program control by selecting a location from a list and
branching to it.Transfer is toLOCI corresponding toI.

Data Input toSELBRA:

DESCR I

- 65 -

Programming Notes:

1. Any of the locations may be omitted.As in the case of operations with omitted conditional branches,
control then passes to the operation followingSELBRA.

2. If I = N+1, control is passed to the operation followingSELBRA.

3. I is always in the range1 ≤ I ≤ N+1. For debugging purposes, it may be useful to verify thatI is within
this range.

99. SETAC (set address to constant)

SETAC DESCR,N

SETAC is used to set the address field of a descriptor to a constant.

Data Altered bySETAC:

DESCR N

Programming Notes:

1. N may be a relocatable address.

2. N is often 0, 1, orD.

3. N is never negative.

4. SeealsoSETVC, SETLC, andSETAV.

100. SETAV (set address from value field)

SETAV DESCR1,DESCR2

SETAV sets the address field of one descriptor from the value field of another.

Data Input toSETAV:

DESCR2 V

Data Altered bySETAV:

DESCR1 V 0 0

- 66 -

Programming Notes:

1. SeealsoSETAC

101. SETF (set flag)

SETF DESCR,FLAG

SETF is used to set (add) a flag in the flag field ofDESCR.

Data Input toSETF:

DESCR F

Data Altered bySETF:

DESCR F+FLAG

Programming Notes:

1. FLAG is added to the flags already present inF. The other flags are left unchanged.

2. If F already containsFLAG, no data is altered.

3. SeealsoSETFI.

102. SETFI (set flag indirect)

SETFI DESCR,FLAG

SETFI is used to set (add) a flag in the flag field of a descriptor specified indirectly.

Data Input toSETFI:

DESCR A

A F

Data Altered bySETFI:

A F+FLAG

- 67 -

Programming Notes:

1. FLAG is added to the flags already present inF. The other flags are left unchanged.

2. If F already containsFLAG, no data is altered.

3. SeealsoSETF andRSETFI.

103. SETLC (set length of specifier to constant)

SETLC SPEC,N

SETLC is used to set the length of a specifier to a constant.

Data Altered bySETLC:

SPEC N

Programming Notes:

1. N is never negative.

2. N is often 0.

3. SeealsoSETAC.

104. SETSIZ (set size)

SETSIZ DESCR1,DESCR2

SETSIZ is used to set the size into the value field of a title descriptor.

Data Input toSETSIZ:

DESCR1 A

DESCR2 I

Data Altered bySETSIZ:

A I

- 68 -

Programming Notes:

1. I is always positive and small enough to fit into the value field.

2. SeealsoGETSIZ

105. SETSP (set specifier)

SETSP SPEC1,SPEC2

SETSP is used to set one specifier equal to another.

Data Input toSETSP:

SPEC2 A F V O L

Data Altered bySETSP:

SPEC1 A F V O L

106. SETVA (set value field from address)

SETVA DESCR1,DESCR2

SETVA is used to set the value field of one descriptor from the address field of another.

Data Input toSETVA:

DESCR2 I

Data Altered bySETVA:

DESCR1 I

Programming Notes:

1. I is always positive and small enough to fit into the value field.

2. SeealsoSETVA andSETVC.

- 69 -

107. SETVC (set value to constant)

SETVC DESCR,N

SETVC is used to set the value field of a descriptor to a constant.

Data Altered bySETVC:

DESCR N

Programming Notes:

1. N is always positive and small enough to fit into the value field.

2. SeealsoSETVA andSETAC.

108. SHORTN (shorten specifier)

SHORTN SPEC,N

SHORTN is used to shorten the specification of a string.

Data Input toSHORTN:

SPEC L

Data Altered bySHORTN:

SPEC L-N

Programming Notes:

1. L-N is never negative.

109. SPCINT (convert specifier to integer)

SPCINT DESCR,SPEC,FLOC,SLOC

SPCINT is used to convert a specified string to a integer. I(S) is a signed integer resulting from the
conversion of the stringC1...CL. If C1...CL does not represent an integer or if the integer it represents is
too large to fit the address field, transfer is toFLOC. Otherwise transfer is toSLOC.

- 70 -

Data Input toSPCINT:

SPEC A O L

A+O C1 ... CL

Data Altered bySPCINT:

DESCR I(S) 0 I

Programming Notes:

1. I is a symbol defined in the source program and is the code for the integer data type.

2. C1...CL may begin with a sign (plus or minus) and may contain indefinite number of leading zeros.
Consequently the value ofL itself does not determine whether the integer represented is too large to fit into
an address field.

3. A sign alone is not a valid integer.

4. If L = 0, I(S) should be the integer 0.

5. SeealsoINTSPC andSPREAL.

110. SPEC (assemble specifier)

LOC SPEC A,F,V,O,L

SPEC is used to assemble a specifier.

Data Assembled bySPEC:

LOC A F V O L

111. SPOP (pop specifier from stack)

SPOP (SPEC1,...,SPECN)

SPOP is used to pop a list of specifiers from the system stack.

- 71 -

Data Input toSPOP:

CSTACK A

A+D-S A1 F1 V1 O1 L1

.

.

.

A+D-(N*S) AN FN VN ON LN

Data Altered bySPOP:

CSTACK A-(N*S)

SPEC1 A1 F1 V1 O1 L1

.

.

.

SPECN AN FN VN ON LN

Programming Notes:

1. If A-(N*S) < STACK, stack underflow occurs.This condition indicates a programming error in the
implementation of the macro language.An appropriate error termination for this error may be obtained by
transferring to the program locationINTR10 if the condition is detected.

2. SeealsoPOP, SPUSH, andPUSH.

112. SPREAL (convert specified string to real number)

SPREAL DESCR,SPEC,FLOC,SLOC

SPREAL is used to convert a specified string into a real number. R(S) is a signed real number
resulting from the conversion of the stringS = C1. If C1...CL does not represent a real number, or if the
real number it represents is out of the range available for real numbers, transfer is toFLOC. Otherwise
transfer is toSLOC.

Data Input toSPREAL:

SPEC A O L

A+O C1 ... CL

- 72 -

Data Altered bySPREAL:

DESCR R(S) 0 R

Programming Notes:

1. R is a symbol defined in the source program and is the code for the real data type.

2. C1,...,CL may begin with a sign (plus or minus) and may contain an indefinite number of leading
zeros. C1,...,CL will contain a decimal point if it represents a real number, and have at least one digit
before the decimal point.

3. If L = 0, R(S) should be the real number 0.0.

4. SeealsoSPCINT andINTRL.

113. SPUSH (push specifiers onto stack)

SPUSH (SPEC1,...,SPECN)

SPUSH is used to push a list of specifiers onto the system stack.

Data Input toSPUSH:

CSTACK A

SPEC1 A1 F1 V1 O1 L1

.

.

.

SPECN AN FN VN ON LN

Data Altered bySPUSH:

CSTACK A+(S*N)

A+D A1 F1 V1 O1 L1

.

.

.

A+D+S*N-S AN FN VN ON LN

- 73 -

Programming Notes:

1. If A+(S*N) > STACK+STSIZE, stack overflow occurs.Transfer should be made to the program
locationOVER, which will result in an appropriate error termination.

2. SeealsoPUSH, POP, andSPOP.

114. STPRNT (string print)

STPRNT DESCR1,DESCR2,SPEC

STPRNT is used to print a string.The stringC11...C1L is printed on the file associated with unit
reference numberI. C21...C2M is the output format.J is an integer specifying a condition signaled by the
output routine.

Data Input toSTPRNT:

DESCR2 A

A+D I

A+2D A2

A2 M

A2+4D C21 ... C2M

SPEC A1 O1 L

A1+O1 C11 ... C1L

Data Altered bySTPRNT:

DESCR1 J

Programming Notes:

1. TheformatC21...C2M is a FORTRAN IV format in ‘‘‘ undigested’’’ f orm. SeeFORMAT.

2. BothC11...C1L andC21...C2M begin at descriptor boundaries.

3. TheconditionJ set in the address field ofDESCR1 is not used.

4. SeealsoOUTPUT andSTREAD.

- 74 -

115. STREAD (string read)

STREAD SPEC,DESCR,EOF,ERROR,SLOC

STREAD is used to read a string.The stringC1...CL is read from the file associated with unit
reference numberI. If an end-of-file is encountered, transfer is toEOF. If a reading error occurs, transfer
is toERROR. Otherwise transfer is toSLOC.

Data Input toSTREAD:

DESCR I

SPEC A O L

Data Altered bySTREAD:

A+O C1 ... CL

Programming Notes:

1. Notethat the length of the string to be read is specified by the data provided toSTREAD. If the record
read is not of lengthL, FORTRAN IV conventions regarding truncation or reading of additional records
should be followed.

2. SeealsoSTPRNT.

116. STREAM (stream for token)

STREAM SPEC1,SPEC2,TABLE,ERROR,RUNOUT,SLOC

STREAM is used to locate a syntactic token at the beginning of the string specified bySPEC2. If
there is anI (1 ≤ I ≤ L) such thatTI is ERROR, STOP, or STOPSH, and J is the least suchI, then ifTJ is
ERROR, transfer is toERRROR, while if if TJ is STOPSH, transfer is toSLOC. Otherwise transfer is
to RUNOUT.

In the figures that follow, J is the least value ofI for which TI is STOP or STOPSH. P is the last
value ofP (1 ≤ I ≤ J) that is nonzero (i.e. for which aPUT is specified in the syntax table description for
the tables given).If no PUT is specified,P is zero.

- 75 -

Data Input toSTREAM:

SPEC2 A F V O L

A+O C1 ... CJ CJ+1 ... CL

TABLE+E*C1 A2 T1 P1

A2+E*C2 A3 T2 P2

.

.

.

AL+E*CL TL PL

Data Altered bySTREAM if Termination isSTOP:

STYPE P

SPEC1 A F V O J

SPEC2 A F V O+J L-J

Data Altered bySTREAM if Termination isSTOPSH:

STYPE P

SPEC1 A F V O J-1

SPEC2 A F V O+J-1 L-J+1

Data Altered bySTREAM if Termination isERROR:

STYPE 0

SPEC1 A F V O L

Data Altered bySTREAM if Termination isRUNOUT:

STYPE P

SPEC1 A F V O L

SPEC2 A F V O 0

- 76 -

Programming Notes:

1. Termination withSTOP or STOPSH may occur on the last character, CL.

2. If L = 0 (i.e. if SPEC2 specifies the null string),RUNOUT occurs. Inthis case the address field of
STYPE should be set to 0.

3. SeeSection 4.2.

117. STRING (assemble specified string)

LOC STRING ’C1...CL’

STRING is used to assemble a string and a specifier to it.

Data Assembled bySTRING:

LOC A 0 0 0 L

A C1 ... CL

Programming Notes:

1. Notethat LOC is the location of the specifier, not the string.The string may immediately follow the
specifier, or it may be assembled at a remote location.

118. SUBSP (substring specification)

SUBSP SPEC1,SPEC2,SPEC3,FLOC,SLOC

SUBSP is used to specify an initial substring of a specified string.If L3 ≥ L2, transfer is toSLOC.
Otherwise transfer is toFLOC andSPEC1 is not altered.

Data Input toSUBSP:

SPEC2 L2

SPEC3 A3 F3 V3 O3 L3

Data Altered bySUBSP if L3 ≥ L2:

SPEC1 A3 F3 V3 O3 L2

- 77 -

119. SUBTRT (subtract addresses)

SUBTRT DESCR1,DESCR2,DESCR3,FLOC,SLOC

SUBTRT is used to subtract one address field from another. A2 andA3 are considered as signed
integers. IfA2-A3 is out of the range available for integers, transfer is toFLOC. Otherwise transfer is to
SLOC.

Data Input toSUBTRT:

DESCR2 A2 F2 V2

DESCR3 A3

Data Altered bySUBTRT:

DESCR1 A2-A3 F2 V2

Programming Notes:

1. A2 andA3 may be relocatable addresses.

2. Thetest for success and failure is used in only one call of this macro.Hence the code to make the
check is not needed in most cases.

3. DESCR1 andDESCR2 are often the same.

4. SeealsoSUM.

120. SUM (sum addresses)

SUM DESCR1,DESCR2,DESCR3,FLOC,SLOC

SUM is used to add two address fields.A andI are considered as signed integers.If A+I is out of the
range available for integers, transfer is toFLOC. Otherwise transfer is toSLOC.

Data Input toSUM:

DESCR2 A F V

DESCR3 I

Data Altered bySUM:

DESCR1 A+I F V

- 78 -

Programming Notes:

1. A may be a relocatable address.

2. Thetest for success and failure is used in only one call of this macro.Hence the code to make the
check is not needed in most cases.

3. DESCR1 andDESCR2 are often the same.

4. SeealsoSUBTRT.

121. TESTF (test flag)

TESTF DESCR,FLAG,FLOC,SLOC

TESTF is used to test a flag field for the presence of a flag.If F containsFLAG, transfer is to
SLOC. Otherwise transfer is toFLOC.

Data Input toTESTF:

DESCR F

Programming Notes:

1. SeealsoTESTFI.

122. TESTFI (test flag indirect)

TESTFI DESCR,FLAG,FLOC,SLOC

TESTFI is used to test an indirectly specified flag field for the presence of a flag.If F contains
FLAG, transfer is toSLOC. Otherwise transfer is toFLOC.

Data Input toTESTFI:

DESCR A

A F

Programming Notes:

1. SeealsoTESTF.

- 79 -

123. TITLE (title assembly listing)

TITLE ’C1...CN’

TITLE is used at assembly time to title the assembly listing of the SNOBOL4 system.TITLE should
cause a page eject and title subsequent pages withC1...CN.

Programming Notes:

1. TITLE need not be implemented as such.It may simply perform no operation.

124. TOP (get to top of block)

TOP DESCR1,DESCR2,DESCR3

TOP is used to get to the top of a block of descriptors.Descriptors atA, A-D,...,A-(N*D) are
examined successively for the first descriptor whose flag field contains the flagTTL. Data is altered as
indicated, whereF3N is the first field to containTTL.

Data Input toTOP:

DESCR3 A F V

A-(N*D) F3N

.

.

.

A-D F31

A F30

Data Altered byTOP:

DESCR1 A-(N*D) F V

DESCR2 N*D 0 0

Programming Notes:

1. N may be 0.That is,F30 may containTTL.

- 80 -

125. TRIMSP (trim blanks fr om specifier)

TRIMSP SPEC1,SPEC2

TRIMSP is used to obtain a specifier to the part of a specified string up to a trailing string of blanks.

Data Input toTRIMSP:

SPEC2 A F V O L

A+O C1 ... CJ CJ+1 ... CL

Data Altered byTRIMSP:

SPEC1 A F V O J

Programming Notes:

1. If CL is not blank,J = L.

2. If L = 0, TRIMSP is equivalent toSETSP.

126. UNLOAD (unload external function)

UNLOAD SPEC

UNLOAD is used to unload an external function.C1...CL represents the name of the function that is
to be unloaded.

Data Input toUNLOAD:

SPEC A O L

A+O C1 ... CL

Programming Notes:

1. UNLOAD is a system-dependent operation.

2. UNLOAD need not be implemented as such.If it is not, it should perform no operation, since the
SNOBOL functionUNLOAD, which uses the macroUNLOAD, has a valid use in undefining existing, but
non-external, functions.

3. UNLOAD should do nothing if the functionC1...CL is not aLOADed function.

4. SeealsoLOAD andLINK.

- 81 -

127. VARID (compute variable identification numbers)

VARID DESCR,SPEC

VARID is used to compute two variable identification numbers from a specified string.K andM are
computed by

K = F1(C1...CL)
M = F2(C1...CL)

whereF1 andF2 are two (different) functions that compute pseudo-random numbers from the characters
C1...CL. The numbers computed should be in the ranges

0 ≤ K ≤ (OBSIZ-1)*D
0 ≤ M ≤ SIZLIM

whereOBSIZ is a program symbol defining the number of chains in variable storage andSIZLIM is a
program symbol defining the largest integer that can be stored in the value field of a descriptor.

Data Input toVARID:

SPEC A O L

A+O C1 ... CL

Data Altered byVARID:

DESCR K M

Programming Notes:

1. K is used to select one of a number of chains in variable storage.The K are address offsets that must
fall on descriptor boundaries.

2. M is used to order variables (string structures) within a chain.SeeORDVST.

3. Thevalues ofK andM should have as little correlation as possible with the charactersC1...CL, since
the ‘‘‘ randomness’’’ o f the results determines the efficiency of variable access.

4. Onesimple algorithm consists of multiplying the first part ofC1...CL by the last part, and separating
the central portion of the result intoK andM.

5. L is always greater than zero.

128. VCMPIC (value field compare indir ect with offset constant)

VCMPIC DESCR1,N,DESCR2,GTLOC,EQLOC,LTLOC

- 82 -

VCMPIC is used to compare a value field, indirectly specified with an offset constant, with another
value field. V1 andV2 are considered as unsigned integers.If V1 > V2, transfer is toGTLOC. If V1 =
V2, transfer is toEQLOC. If V1 < V2, transfer is toLTLOC.

Data Input toVCMPIC:

DESCR1 A1

DESCR2 V2

A1+N V1

129. VEQL (value fields equal test)

VEQL DESCR1,DESCR2,NELOC,EQLOC

VEQL is used to compare the value fields of two descriptors.V1 andV2 are considered as unsigned
integers. IfV1 = V2, transfer is toEQLOC. Otherwise transfer is toNELOC.

Data Input toVEQL:

DESCR1 V1

DESCR2 V2

Programming Notes:

1. SeealsoAEQL andVEQLC.

130. VEQLC (value field equal to constant test)

VEQLC DESCR,N,NELOC,EQLOC

VEQLC is used to compare the value field of a descriptor to a constant.V is considered as an
unsigned integer. If V = N, transfer is toEQLOC. Otherwise transfer is toNELOC.

Data Input toVEQLC:

DESCR V

Programming Notes:

1. N is never negative.

2. SeealsoAEQLC andVEQL.

- 83 -

131. ZERBLK (zero block)

ZERBLK DESCR1,DESCR2

ZERBLK is used to zero a block ofI+1 descriptors.

Data Input toZERBLK:

DESCR1 A

DESCR2 D*I

Data Altered byZERBLK:

A 0 0 0

.

.

.

A+(D*I) 0 0 0

Programming Notes:

1. I is always positive.

7. ImplementationNotes

7.1. OptionalMacros

There are several macros that are used in noncritical parts of the SNOBOL4 language.Some macros
are used only to implement certain built-in functions.Others are required only for minor executive
operations. Thefollowing list includes macros for which implementation is optional.For these macros,
simple alternative implementations are suggested and the language features disabled are indicated.In
selecting macros for inclusion in this list, a judgement was made concerning what features could be
disabled and still leave SNOBOL4 a useful language.

Macro Alternative Implementation Features Disabled

ADREAL1— Branchto INTR10 Real arithmetic

BKSPCE Branch toUNDF The functionBACKSPACE

CLERTB2— Branchto UNDF The functionsANY, NOTANY, SPAN, andBREAK

DATE Set length ofSPEC to 0 The functionDATE

DVREAL1— Setaddress ofDESCR2 to 0 Real arithmetic and post-run statictics

1—All operations relating to real arithmetic should be implemented or not implemented as a group.

2—CLERTB andPLUGTB should be implemented or not implemented as a pair.

- 84 -

ENFILE Branch toUNDF The functionENDFILE

EXPINT Branch toUNDF Exponentiation of integers

EXREAL1— Branchto INTR10 Real arithmetic

GETBAL Branch toUNDF The built-in patternBAL

INTRL1— Performno operation Real arithmetic

LEXCMP3— If GTLOC ≠ LTLOC, branch toUNDF The functionLGT

LINK4— Branchto INTR10 External functions

LOAD4— Branchto UNDF External functions

MNREAL1— Branchto INTR10 Real arithmetic

MPREAL1— Branchto INTR10 Real arithmetic

MSTIME Set address ofDESCR to 0 The functionTIME, trace timing, post-run statistics

ORDVST Perform no operation Alphabetization of post-run dump

PLUGTB2— Branchto INTR10 The functionsANY, NOTANY, SPAN,andBREAK

RCOMP1— Branchto INTR10 Real arithmetic

REALST1— Branchto UNDF Real arithmetic

REWIND Branch toINTR10 The functionREWIND

RLINT1— Branchto INTR10 Real arithmetic

RPLACE Branch toINTR10 The functionREPLACE

SBREAL1— Branchto INTR10 Real arithmetic

SPREAL1— Take theFAILURE exit Realarithmetic

TRIMSP Branch toINTR10 The functionTRIM

UNLOAD4— Performno operation External functions

3—LEXCMP must be properly implemented ifLTLOC is the same asGTLOC.

4—LINK, LOAD, andUNLOAD should be implemented or not implemented as a group.

- 85 -

7.2. Machine-DependentData

In addition to the data given in theCOPY files (q.v.) there are several format strings that generally
have to be changed to suit a particular machine.The strings defined byFORMAT (which occur at the end
of the source file) are in this category. The two stringsCRDFSP andOUTPSP defined bySTRING are
also machine dependent.

7.3. Error Exits for Debugging

During the debugging phases, it is good programming practice to test for certain conditions that
should not occur, but typically do if there is an error in the implementation.Stack underflow is typical.
Transfer to the labelINTR10 upon recognition of such an error causes the SNOBOL4 run to terminate with
the messageERROR IN SNOBOL4 SYSTEM. Following this message, the statement number in which
the error occurred is printed, as well as requested dumps and termination statistics that may be helpful in
debugging.

7.4. Subroutines Versus In-Line Code

The choice between implementing macro operations by subroutine calls or in-line code depends on a
number of factors, including the machine and its environment.The size of the SNOBOL4 system usually
encourages subroutine implementations of the more complicated operations.The following information,
obtained by program analysis and dynamic performance measurements, may be helpful in making these
decisions. Column1 lists the macro operations in alphabetical order, including non-executable macros.
Column 2 gives the number of times each each macro operation occurs in the SNOBOL4 program.
Column 3 gives the percentage of time spent in each (executable) macro during execution of a typical set of
programs on the IBM System/360 implementation.Time spent in I/O and operating system subroutines is
not included. A * marks those macros that are implementated by subroutines in the IBM System/360
implementation (including macros that call I/O and system subroutines).

ACOMP 65 2.952
ACOMPC 61 1.450
ADDLG 8 0.000
ADDSIB 6 0.000
ADDSON 12 0.017
ADJUST 2 0.000
ADREAL 1 0.000
AEQL 18 0.397
AEQLC 177 3.574
AEQLIC 10 0.086
APDSP* 93 0.897
ARRAY 5 −−−−−
BKSIZE 5 1.329
BKSPCE* 1 0.000
BRANCH 354 0.638
BRANIC 5 2.054
BUFFER 5 −−−−−
CHKVAL 4 0.604
CLERTB 4 0.000
COPY 3 −−−−−
CPYPAT* 14 3.021
DATE* 1 0.000
DECRA 66 1.588
DEQL 73 1.346
DESCR 920 −−−−−
DIVIDE 4 0.000
DVREAL 2 0.000
END 1 −−−−−

− 86 −

ENDEX* 1 0.000
ENFILE* 1 0.000
EQU 69 −−−−−
EXPINT 1 0.000
EXREAL* 1 0.000
FORMAT 26 −−−−−
FSHRTN 12 0.000
GETAC 10 0.638
GETBAL* 1 0.172
GETD 53 7.408
GETDC 113 5.025
GETLG 59 0.759
GETLTH 2 0.172
GETSIZ 28 0.397
GETSPC 10 0.017
INCRA 140 5.577
INCRV 1 0.000
INIT* 1 0.138
INSERT 1 0.000
INTRL 7 0.000
INTSPC* 25 0.552
ISTACK 2 0.000
LCOMP 5 0.000
LEQLC 18 0.103
LEXCMP* 12 2.624
LHERE 14 −−−−−
LINK* 1 0.000
LINKOR 1 0.000
LOAD* 1 0.000
LOCAPT 21 1.467
LOCAPV 32 5.197
LOCSP 80 1.605
LVALUE* 6 0.207
MAKNOD 13 0.172
MNREAL 1 0.000
MNSINT 1 0.034
MOVA 7 0.397
MOVBLK* 13 0.103
MOVD 155 1.985
MOVDIC 7 0.017
MOVV 16 0.811
MPREAL 1 0.000
MSTIME* 8 0.000
MULT 6 0.120
MULTC 18 0.207
ORDVST* 1 0.000
OUTPUT* 28 0.034
PLUGTB 4 0.000
POP 118 4.282
PROC 173 2.365
PSTACK 5 0.034
PUSH 124 3.091
PUTAC 11 0.448
PUTD 33 0.069

− 87 −

PUTDC 126 3.056
PUTLG 9 0.189
PUTSPC 1 0.138
PUTVC 1 0.034
RCALL 342 8.927
RCOMP 6 0.000
REALST* 10 0.000
REMSP 7 0.448
RESETF 3 0.000
REWIND* 1 0.000
RLINT 2 0.000
RPLACE* 1 0.000
RRTURN 21 6.182
RSETFI 2 0.000
SBREAL 1 0.000
SELBRA 18 0.017
SETAC 169 0.673
SETAV 33 1.830
SETF 1 0.000
SETFI 5 0.086
SETLC 28 0.034
SETSIZ 7 0.155
SETSP 23 0.155
SETVA 14 0.051
SETVC 28 0.207
SHORTN 4 0.000
SPCINT* 24 0.069
SPEC 30 −−−−−
SPOP 4 0.000
SPREAL* 13 0.000
SPUSH 4 0.000
STPRNT* 15 0.051
STREAD* 4 0.051
STREAM* 35 0.656
STRING 152 −−−−−
SUBSP 3 0.362
SUBTRT 22 0.189
SUM 67 1.709
TESTF 24 1.899
TESTFI 9 0.707
TITLE 24 −−−−−
TOP 4 0.241
TRIMSP 2 0.069
UNLOAD* 1 0.000
VARID 1 0.897
VCMPIC 1 0.535
VEQL 3 2.158
VEQLC 106 0.759
ZERBLK 3 0.128

7.5. Classificationof Macro Operations

In the following sections, the macro operations are classified according to the way they are
used.

88

Assembly Control Macros:

COPY END EQU LHERE TITLE

Macros that Assemble Data:

ARRAY BUFFER DESCR FORMAT SPEC
STRING

Branch Macros:

BRANCH BRANIC SELBRA

Comparison Macros:

ACOMP ACOMPC AEQL AEQLC AEQLIC
CHKVAL DEQL LCOMP LEQLC LEXCMP
RCOMP TESTF TESTFI VCMPIC VEQL
VEQLC

Macros that Relate to Recursive Procedures and Stack Management:

ISTACK POP PROC PSTACK PUSH
RCALL RRTURN SPOP SPUSH

Macros that Move and Set Descriptors:

GETD GETDC MOVBLK MOVD MOVDIC
POP PUSH PUTD PUTDC ZERBLK

Macros that Modify Address Fields of Descriptors:

ADJUST BKSIZE DECRA GETAC GETLG
GETLTH GETSIZ INCRA MOVA PUTAC
SETAC SETAV

Macros that Modify Value Fields of Descriptors:

INCRV MOVV PUTVC SETSIZ SETVA
SETVC

Macros that Modify Flag Fields of Descriptors:

RESETF RSETFI SETF SETFI

Macros that Perform Integer Arithmetic on Address Fields:

DECRA DIVIDE EXPINT INCRA MNSINT
MULT MULTC SUBTRT SUM

Macros that Deal with Real Numbers:

89

ADREAL DVREAL EXREAL INTRL MNREAL
MPREAL RCOMP REALST RLINT SBREAL
SPREAL

Macros that Move Specifiers:

GETSPC PUTSPC SETSP SPOP SPUSH

Macros that Operate on Specifiers:

ADDLG APDSP FSHRTN GETBAL INTSPC
LOCSP PUTLG REMSP SETLC SHORTN
STREAM SUBSP TRIMSP

Macros that Operate on Syntax Tables:

CLERTB PLUGTB

Macros that Construct Pattern Nodes:

CPYPAT MAKNOD

Macros that Operate on Tree Nodes:

ADDSIB ADDSON INSERT

Input and Output Macr os:

BKSPCE ENFILE FORMAT OUTPUT REWIND
STPRNT STREAD

Macros that Depend on Operating System Facilities:

DATE ENDEX INIT LINK LOAD
MSTIME UNLOAD

Miscellaneous Macros:

LINKOR LOCAPT LOCAPV LVALUE ORDVST
RPLACE SPCINT TOP VARID

7.6. Formatof the SNOBOL4 Source File

One problem in implementing SNOBOL4 for a particular machine involves putting the
macro languageprogram into a form suitable for the assembler for that machine.This typically
involves making a number of format changes and correcting a few special cases by hand.It is
desirable to perform as many changes as possible by some systematic, mechanical means (preferably
with a program) so that new versions of the macrolanguage program can be converted into the
required form easily, thus facilitating the incorporation of updates in the SNOBOL4 language.A
systematic, mechanical technique also minimizes random errors inevitably introduced by human
interference. Suchrandom errors are particularly dangerous in such an implementation, since most
of the logic of the system is at a level divorced from the implementation of the macro language.This
section describes the format of the macrolanguage program in order to make the necessary format
changes easier to determine.

90

The SNOBOL4 assembly source file consists of 6611 80 character card images.All card
images are blank in column 72 and contain sequence numbering in columns 73 through 80.Updates
to the source file are given in terms of these sequence numbers, so care should be taken not to destroy
this information.There are two kinds of card images:program text and comments.Comments have
an asterisk (*) in column 1 and descriptive text of various types in columns 2 through 71.All other
card images (about 4850 out of the total of 6611) are program text.Program text has a field format
as follows:

1. Columns1 through 6: label field. A program label, if present, begins in column 1.All labels
begin with a letter, followed by letters or digits.Labels are from two through six characters in
length. Ifa program card has no label, the label field is blank.

2. Column7: blank.

3. Columns8 through 13: operation field.Program text has operations that begin in column 8.
Operations consist of from three to six letters.

4. Columns14 and 15:blank.

5. Columns16 through 71:variable field. A l ist of operands appears in the variable field starting
in column 16. The list consists of items separated by commas.The last item in the list is followed
by a blank. If there are no operands, there is a comma in column 16 and a blank in column 17.Items
in the operand list may take several forms:

a. Identifiers,which satisfy the requirements of program labels.

b. Integerconstants.

c. Arithmeticexpressions containing identifiers and constants.

d. Lists of items enclosed in parentheses.Lists are not nested, i.e. lists do not occur as items
within lists.

e. Characterliterals, consisting of characters enclosed in single quotation marks.Quotation
marks do not occur within literals, but commas, parentheses, and blanks may. This fact must
be taken into account in analyzing the variable field.

f. Nulls, or items of zero length.Nulls represent explicitly omitted arguments to macro
operations.

Comments may occur following the blank that terminates the variable field.Such comments
begin in column 36 or subsequently.

The following portion of program is typical.
−−− 00000821
* 00000822
* Block Marking 00000823
* 00000824
GCM PROC , Procedure to mark blocks 00000825

POP BK1CL Restore block to mark from 00000826
PUSH ZEROCL Save end marker 00000827

GCMA1 GETSIZ BKDX,BK1CL Get size of block 00000828
GCMA2 GETD DESCL,BK1CL,BKDX Get descriptor 00000829

TESTF DESCL,PTR,GCMA3 Is it a pointer? 00000830
AEQLC DESCL,0,,GCMA3 Is address zero? 00000831
TOP TOPCL,OFSET,DESCL Get to title of block pointed to 00000832
TESTFI TOPCL,MARK,GCMA4 Is block marked? 00000833

GCMA3 DECRA BKDX,DESCR Decrement offset 00000834
AEQLC BKDX,0,GCMA2 Check for end of block 00000835
POP BK1CL Restore block pushed 00000836
AEQLC BK1CL,0,,RTN1 Check for end 00000837
SETAV BKDX,BK1CL Get size remaining 00000838
BRANCH GCMA2 Continue processing 00000839

*_ 00000840

− 91−

GCMA4 DECRA BKDX,DESCR Decrement offset 00000841
AEQLC BKDX,0,,GCMA9 Check for end 00000842
SETVA BK1CL,BKDX Insert offset 00000843
PUSH BK1CL Save current block 00000844

GCMA9 MOVD BK1CL,TOPCL Set poiner to new block 00000845
SETFI BK1CL,MARK Mark block 00000846
TESTFI BK1CL,STTL,GCMA1 Is it a string? 00000847
MOVD BKDX,TWOCL Set size of string to 2 00000848
BRANCH GCMA2 Join processing 00000849

*_ 00000850

Acknowledgement

The SIL version of SNOBOL4 was implemented jointly by the author, Jim Poage, and Ivan
Polonsky. Other individuals, too numerous to mention here, have provided many helpful criticisms and
corrections of this document.

−92−

Appendix A — Syntax Table Descriptions

BEGIN BIOPTB
FOR(PLUS) PUT(ADDFN) GOTO(TBLKTB)
FOR(MINUS) PUT(SUBFN) GOTO(TBLKTB)
FOR(DOT) PUT(NAMFN) GOTO(TBLKTB)
FOR(DOLLAR) PUT(DOLFN) GOTO(TBLKTB)
FOR(STAR) PUT(MPYFN) GOTO(STARTB)
FOR(SLASH) PUT(DIVFN) GOTO(TBLKTB)
FOR(AT) PUT(BIATFN) GOTO(TBLKTB)
FOR(POUND) PUT(BIPDFN) GOTO(TBLKTB)
FOR(PERCENT) PUT(BIPRFN) GOTO(TBLKTB)
FOR(RAISE) PUT(EXPFN) GOTO(TBLKTB)
FOR(ORSYM) PUT(ORFN) GOTO(TBLKTB)
FOR(KEYSYM) PUT(BIAMFN) GOTO(TBLKTB)
FOR(NOTSYM) PUT(BINGFN) GOTO(TBLKTB)
FOR(QUESYM) PUT(BIQSFN) GOTO(TBLKTB)
ELSE ERROR
END BIOPTB

BEGIN CARDTB
FOR(CMT) PUT(CMTTYP) STOPSH
FOR(CTL) PUT(CTLTYP) STOPSH
FOR(CNT) PUT(CNTTYP) STOPSH
ELSE PUT(NEWTYP) STOPSH
END CARDTB

BEGIN DQLITB
FOR(DQUOTE) STOP
ELSE CONTIN
END DQLITB

BEGIN ELEMTB
FOR(NUMBER) PUT(ILITYP) GOTO(INTGTB)
FOR(LETTER) PUT(VARTYP) GOTO(VARTB)
FOR(SQUOTE) PUT(QLITYP) GOTO(SQLITB)
FOR(DQUOTE) PUT(QLITYP) GOTO(DQLITB)
FOR(LEFTPAREN) PUT(NSTTYP) STOP
ELSE ERROR
END ELEMTB

BEGIN EOSTB
FOR(EOS) STOP
ELSE CONTIN
END EOSTB

BEGIN FLITB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) STOPSH
ELSE ERROR
END FLITB

− 93 −

BEGIN FRWDTB
FOR(BLANK) CONTIN
FOR(EQUAL) PUT(EQTYP) STOP
FOR(RIGHTPAREN) PUT(RPTYP) STOP
FOR(RIGHTBR) PUT(RBTYP) STOP
FOR(COMMA) PUT(CMATYP) STOP
FOR(COLON) PUT(CLNTYP) STOP
FOR(EOS) PUT(EOSTYP) STOP
ELSE PUT(NBTYP) STOPSH
END FRWDTB

BEGIN GOTFTB
FOR(LEFTPAREN) PUT(FGOTYP) STOP
FOR(LEFTBR) PUT(FTOTYP) STOP
ELSE ERROR
END GOTFTB

BEGIN GOTOTB
FOR(SGOSYM) GOTO(GOTSTB)
FOR(FGOSYM) GOTO(GOTFTB)
FOR(LEFTPAREN) PUT(UGOTYP) STOP
FOR(LEFTBR) PUT(UTOTYP) STOP
ELSE ERROR
END GOTOTB

BEGIN GOTSTB
FOR(LEFTPAREN) PUT(SGOTYP) STOP
FOR(LEFTBR) PUT(STOTYP) STOP
ELSE ERROR
END GOTSTB

BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR
END IBLKTB

BEGIN INTGTB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) PUT(ILITYP) STOPSH
FOR(DOT) PUT(FLITYP) GOTO(FLITB)
ELSE ERROR
END INTGTB

BEGIN LBLTB
FOR(ALPHANUMERIC) GOTO(LBLXTB)
FOR(BLANK,EOS) STOPSH
ELSE ERROR
END LBLTB

− 94 −

BEGIN LBLXTB
FOR(BLANK,EOS) STOPSH
ELSE CONTIN
END LBLXTB

BEGIN NBLKTB
FOR(TERMINATOR) ERROR
ELSE STOPSH
END NBLKTB

BEGIN NUMBTB
FOR(NUMBER) GOTO(NUMCTB)
FOR(PLUS,MINUS) GOTO(NUMCTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR
END NUMBTB

BEGIN NUMCTB
FOR(NUMBER) CONTIN
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR
END NUMCTB

BEGIN SNABTB
FOR(FGOSYM) STOP
FOR(SGOSYM) STOPSH
ELSE ERROR
END SNABTB

BEGIN SQLITB
FOR(SQUOTE) STOP
ELSE CONTIN
END SQLITB

BEGIN STARTB
FOR(BLANK) STOP
FOR(STAR) PUT(EXPFN) GOTO(TBLKTB)
ELSE ERROR
END STARTB

BEGIN TBLKTB
FOR(BLANK) STOP
ELSE ERROR
END TBLKTB

− 95 −

BEGIN UNOPTB
FOR(PLUS) PUT(PLSFN) GOTO(NBLKTB)
FOR(MINUS) PUT(MNSFN) GOTO(NBLKTB)
FOR(DOT) PUT(DOTFN) GOTO(NBLKTB)
FOR(DOLLAR) PUT(INDFN) GOTO(NBLKTB)
FOR(STAR) PUT(STRFN) GOTO(NBLKTB)
FOR(SLASH) PUT(SLHFN) GOTO(NBLKTB)
FOR(PERCENT) PUT(PRFN) GOTO(NBLKTB)
FOR(AT) PUT(ATFN) GOTO(NBLKTB)
FOR(POUND) PUT(PDFN) GOTO(NBLKTB)
FOR(KEYSYM) PUT(KEYFN) GOTO(NBLKTB)
FOR(NOTSYM) PUT(NEGFN) GOTO(NBLKTB)
FOR(ORSYM) PUT(BARFN) GOTO(NBLKTB)
FOR(QUESYM) PUT(QUESFN) GOTO(NBLKTB)
FOR(RAISE) PUT(AROWFN) GOTO(NBLKTB)
ELSE ERROR
END UNOPTB

BEGIN VARATB
FOR(LETTER) GOTO(VARBTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END VARATB

BEGIN VARBTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END VARBTB

BEGIN VARTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(TERMINATOR) PUT(VARTYP) STOPSH
FOR(LEFTPAREN) PUT(FNCTYP) STOP
FOR(LEFTBR) PUT(ARYTYP) STOP
ELSE ERROR
END VARTB

−96−

Appendix B — Available Implementation Material

There is a substantial amount of material available to the would−be installer of the SIL
implementation of SNOBOL4.Much of the basic documentation is given in a book that is available through
book suppliers.The rest of the material is available from the University of Arizona:

Ralph E. Griswold
Department of Computer Science
University Computer Center
The University of Arizona
Tucson, Arizona 85721
U.S.A.

telephone: (602) 626−1829

There is no charge for this material but magnetic tapes must be supplied with requests for machine−readable
material.

Documents with identifying numbers should be requested by number.

1. Version 3.11SIL source code and syntax table descriptions in machine−readable form.This material
is available in a variety of tape formats.The standard distribution is 9−track, 1600 bpi, unlabeled
fixed−blocked, EBCDIC.

2. S4D54c:Transporting the SIL Version of SNOBOL4; An Overview. Gives a brief description of the
processing of implementing the SIL version of SNOBOL4; suggested reading prior to serious work
on the implementation.

3. The Macro Implementation of SNOBOL4; A Case Study of Machine−Independent Software
Development. (author: RalphE. Griswold, publisher:W. H. Freeman & Co.)A description of the
SIL version of SNOBOL4 that describes data structures, algorithms, the SIL macros, and gives
examples from the IBM 360 and CDC 6000 implementations.This book is available from book
sellers. Theprice is approximately $25.00.The terminology used in this book is different from that
used in the actual SIL source.See S4D59 below.

4. Corrigenda for The Macro Implementation of SNOBOL4. Corrections to the Freeman book listed
above.

5. S4D59:Comparison of Terminologies for the SIL Implementation of SNOBOL4. Explains the
differences between terminology of the Freeman book and that actually used in the
machine−readable SIL program.

6. S4D26c:Source and Cross−Reference Listings for the SIL Implementation of SNOBOL4; Version
3.11. Listing of SNOBOL4 written in SIL.This document is primarily useful for its cross reference to
program symbols.

7. S4D20a:IBM 360 Macro Definitions for Version 3 of SNOBOL4. Listing of the IBM 360 macro
definitions for SIL operations; primarily useful as an example of an existing implementation.The
macro definitions are also available in machine−readable form.

8. S4D19a:IBM 360 Subroutines for Version 3 of SNOBOL4. Listing of the IBM 360 subroutines that
support SIL operations; primarily useful as an example of an existing implementation.The
subroutines are also available in machine−readable form.

9. S4D57:Implementations of SNOBOL4. Compilation of SNOBOL4 implementations, including
those done in SIL; primarily useful as a source of contacts with other SIL implementors.

−97−

