February 1981

Implementing SNOBOLA4 in SIL; Version 3.1

Ralph E. Griswold

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

Implementing SNOBOLA4 in SIL; Version 3.1

Ralph E. Griswold

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

1. Introduction

The SNOBOL4 programming language is implemented in macro-assembly language called SIL
(SNOBOL4 Implementation Language)his macro language is fgly machine-independent and is
designed so that it can be implemented on a variety of computérss, an implementation of the
SNOBOL4 programming language can be obtained by implementing the much simpler macro language.
By implementing the macro language, and using the SNOBOL4 system already written in the macro
language, one obtains a version of SNOBOL4 that igelgrsource-language compatible with other
versions implemented in the same wayearly all the logic of the SNOBOL4 language resides in the
program written in the macro languagghus if the macro language is implemented propérly resulting
implementation of SNOBOL4 is essentially the same as other such implementations.

This paper describes the macro language and contains information necessary for its implementation.
Information given here related teeksion 3.1 of the SIL source, although it applies equally well to any
modification of the basicérsion 3. Section 2 describes environmental considerati@etion 3 describes
the representation of dat&yntax tables and character graphics are described in SectiSaction 5
explains the method used to describe the macro opera@tsion 6 is a list of all macro operations with a
description of how to implement each on8ection 7 contains miscellaneous implementation notes.
Supplementary information, including a list of other documentation, is given in appendices.

2. Environmental Considerations

2.1. Inputand Output

SNOBOL4 is designed to perform all input and output through THO¥N IV routines. A
SNOBOL4 object program has much the same I/O facilities as aTRAR IV object program.
Specification of 1/0 is thus lgely machine-independent both at the source-language level and at the
implementation level.

Files are referred to by their FORAN unit reference numbersin SNOBOL4 unit reference
numbers are integers that appear in data that is givegumants to macros that perform input and output.
Unit reference numbers are referred to symbolically in the SNOBOL4 asse8as\thePARMS file in
the discussion of theOPY macro.

Input, performed bySTREAD, uses only A conversion, with lengths being specifi€@utput is
controlled by formats.Output is performed byYODUTPUT and STPRNT. The output done by the
SNOBOL4 system specifies H-type literals, A, I, and, in one case, F conveRiogtammer formats
should include only literals, X,,Bnd A conversion.Generally speaking, formats occur fruhdigested’
form. Formatsused byOUTPUT are assembled by tH@®ORMAT macro and are intended to be simply
character strings representing undigested fornfaBRMAT may, however assemble any convenient
representation of the formaEormats used bTPRNT are strings that may be formed during program
execution and hence must be accepted in their undigested form.

There are three other 1/O related operations that correspond to theliRADRcounterparts.These
areBKSPCE, ENFILE, and REWIND.

The easiest way to implement SNOBOL4 I/O is to use HROMN calling sequences for
corresponding operations and link the HBRN 1/O library with the SNOBOL4 systemThe main

difficulties usually occur in handling undigested formaf¢hen questions arise as to what an operation

should do, FORRAN conventions should be applied programmer should get the same results from

SNOBOL4 as from FORRAN if, for example, a string of 200 characters is requested from a file
containing 80-character records.

2.2. StorageRequirements

The SNOBOL4 system itself is very ¢gr and SNOBOL4 programs typically requireglaiamounts
of dynamically allocated storageThe magnitude of these requirements may be determined from the
implementation for the IBM System/360This system requires a user partition of about 200K bytes
(characters) to run lge programs.A partition of about 170K bytes permits execution of small programs.
Of the space required, the SNOBOL4 system and its internal data consume about 100K bytes, the
FORTRAN 1/O routines consume about 14K bytes, and the remainder is devoted to dynamically allocated
storage. Allocatedtorage is referred to in machine-independent data units (see the next section) called
descriptors that occupy 8 bytes each on the IBM System/86production system should be able to
provide about 10,000 descriptors of dynamically allocated storBgeause of the lge amount of space
required for dynamic storage, overlay techniques for the program itself can only partially reduce the
requirements for physical storag#irtual memory systems may display poor performance if SNOBOL4 is
run with inadequate amounts of physical storage.

2.3. OtherConsiderations

SNOBOL4 makes few other demands on its operating system environfagitities should be
provided so that the SNOBOL4 system can be called and can return to the operating system under which it
operates. SNOBOL4ses dump facilities to provide core dumps requested by the ke@BEND if
such facilities are availablélime and date information is used by SNOBOL4, but it is not essential.

3. Representation of Data

There are a few basic types of data used in the SNOBOL4 system, and a humber of aggregates of the
basic types.The basic types of data are:

descriptors
specifiers
character strings
syntax table entries

3.1. Descriptors

Descriptors are used to represent all pointers, integers, and real nurAbdescriptor may be
thought of as the basitword” of SNOBOL4. Descriptorgonsist of three fixed-length fields:

address
flag
value

The size and position of these fields is determined from the data they must represent and the way that
they are used in the various operatiome following paragraphs describe some specific requirements.

3.1.1. Address Field

The address field of a descriptor must bgdanough to address any descripgoecifier or program
instruction within the SNOBOL4 systen{Descriptors do not have to address individual characters of
strings. SeeSection 3.2.) The address field must also begkrenough to contain any integer or real
number (including sign) that is to be used in a SNOBOL4 prograhe address field is the most
frequently used field of a descriptor and is used frequently for addressing and integer arithmetic and it
should be positioned so that these operations can be perforficehgy.

3.1.2. FlagField

The flag field is used to represent the states of a number of disjoint conditions and is treated as a set
of bits that are individually tested, turned on, and turnédkifre flag bits used in SNOBOLA4.

3.1.3. \alue Field

The value field is used to represent a number of internal quantities that are represented as unsigned
integers (magnitudes)These quantities include the encoded representation of source-language data types,
the length of strings, and the size (in address units) of various data aggrégateslue field need not be
as lage as the address field, but it must bgdagnough to represent the size of thgdar data aggregate
that can be formed.

On the IBM System/360, a descriptor is two words (eight byfEsg first word is the address field.
The second word consists of one byte for the flag field and three bytes for the valuéhiégettiree bytes
(24 bits) for the value field permits representation of data objectsgasdar2™1 bytes. On the other
hand, two bYtes would limit objects 6% bytes. Since on the IBM System/360 there are eight bytes per
descriptoy 2 6.1 bytes would limit objects to 8191 descriptors, which would be too restrickoe.
machines with fewer address units per descrigtervalue field need not be agger

3.2. Specifiers

Specifiers are used to refer to character striddshost all operations performed on character strings
are handled through operations on specifiédsspecifiers are the same size and have five fields:

address
flag
value
offset
length

Specifiers and descriptors may be stored in the same area indiscrimmatedye indistinguishable
to many processes in the SNOBOL4 systéks.a result, specifiers are composed of two descripone
descriptor is used in the standard way to provide the address, flag, and valudfieldsher descriptor is
used in a nonstandard walis address field is used to represent tligebbf an individual character from
the address given in the speciieaddress field. The value field of this other descriptor is used for the
length.

3.3. CharacterStrings

Character strings are represented in packed format, as many characters per descriptor as possible.
Storage of character strings in SNOBOL4 dynamic storage is always in storage units that are multiples of
descriptors.

3.4. SyntaxTable Entries

Syntax tables are necessarily somewhat machine deper@emsequentlyimplementation of these
tables is done individually for each machin®.description of the table requirements is given in the next
section.

4. SyntaxTables and Character Graphics

4.1. Characters

The SNOBOL4 language permits the use of any character that can be represented on a particular
machine. Therare certain characters that have syntactic significance in the source langhageard
codes, graphics, and internal representations vary from machine to madfoneeach machine,
representations are chosen for each of the syntactically significant char&cteinscharacters and sets of
characters are given descriptive nhames to avoid dependence on a particular miachieelist that
follows, ASCII graphics are used as a point of reference.

function

ALPHANUMERIC

AT
BLANK
BREAK
CMT
CNT
COLON

COMMA
CTL
DOLLAR
DOT
DQUOTE
EOS
EQUAL
FGOSYM
KEYSYM
LEFTBR
LEFTPAREN
LETTER

MINUS
NOTSYM
NUMBER
ORSYM
PERCENT
PLUS
POUND
QUESYM
RAISE
RIGHTBR
RIGHTPAREN
SGOSYM
SLASH
SQUOTE
STAR
TERMINATOR

4.2. SyntaxTables

The lexical syntax of the SNOBOL4 language is analyzed using the ope3afRiBAM (g.v.) which
is driven from syntax tablesThe syntax tables provide a representation of a finite state machine used

name

digit and letter

operator

separator and operator
dot and underscore
comment card
continue card

goto designator and
dimension separator
amgument separator
control card

operator

operator

literal delimiter
statement terminator
assignment

failure goto designator
operator

reference and goto delimiter
expression delimiter
letter

operator

operator

digit

operator

operator

operator

operator

operator

operator

reference and goto delimiter
expression delimiter
success goto designator
operator

literal delimiter

operator

expression terminator

graphics

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
0123456789

@
blank and tab

*

+.

F
&
<[

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

0123456789

|
%
+

> .0 H

>]
)
S
/

*

;)>,] blank and tab

during lexical analysisSee Reference 3 in Appendix B for a more detailed discussion.

In a syntax table there is an entry for each character at a position corresponding to the numerical
value of the internal encoding of that characfBne syntax table entry specifies the action to be taken if

that character is encounterethe actions are:

1. CONTIN, indicating that the current syntax table is to be used for processing the next character

2. GOTO(TABLE), indicating thafTABLE is to be used for processing the next character

3. STOP, indicating thaSTREAM should terminate with the last character examined to be included in
the accepted string.

4. STOPSH, indicating theSTREAM should terminate with the last character examinetito be
included in the string accepted.

5. ERROR, indicating thaSTREAM should terminate with an error indication.

6. PUT(ADDRESS), indicating thatADDRESS is to be placed in the address field of the descriptor
STYPE.

The classes of characters for which actions are to be taken are gi@R idesignations.CONTIN
and GOTO(TABLE) provide information about the next table to use and are typically represented by
addresses in syntax table entriTOP, STOPSH, and ERROR are type indicators used to stop the
streaming process.

SNABTB is used in pattern matching fBNY(CS), BREAK(CS), NOTANY(CS), and SPAN(CS).
SNABTB is modified during execution by the mact©kERTB and PLUGTB (g.v.). Theother syntax
tables are not modified.

Two representative syntax table descriptions folldwcomplete list is given in Appendix A.

BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR

END IBLKTB

BEGIN VARBTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR

END VARBTB

The syntax tables for the IBM System/360 implementation are generated from such descriptions
using a (SNOBOL4) program in which the character classes and the order of the internal character codes
are parametersThe use of some kind of automatic technique to generate the syntax tables is advisable,
both to ensure accuracy and because of tige Emount of data involved.

5. Describingthe Macros

This section explains the method of describing the macfbg. instructions for implementing an
operation usually consist of a description of the operatifumiction, figures indicating data relating to the
operation, and programming notes that contain details and references to other relevant infofrhation.
figures consist of stylized representations of the various data objects and the fields within them.

5.1. DiagrammaticRepresentation of Data

The representation of a descriptolL&@C1 is shown below A, F, and V indicate the values of the
address, flag, and value fields.

LOC1] A F Vv

The representation of a specifiel&@C2 is shown below A, F, V, O, and L indicate the values of
the address, flag, valuefsdt, and length fields.

LOC2 A F \% @] L

Character strings have two representations depending on how many characters are relevant to the
description. Theshort representation of a string lotcharacters is shown belowC1 andCL are the first
and last characters, respectively this representation, the intermediate characters are indicated by dots.

LOC3 C1 \ CL \

The long representation of a string lofcharacters atOC4 is shown below CJ and CJ+1 are
relevant characters in the interior of the strinbhe long representation is used when such interior
characters must be specified.

LOC4 c1 | .. | c o] .. | cL|

The representation of a syntax table entry is shown befgW, and P indicate values of the next
table address, type indicatand put field as specified by tRJT action.

LOC5 A T P |

Various values and expressions may occur in the fields of data obkéelds are left blank when
their value is not used in an operatidn.data objects that are changed by an operation, unchanged fields
are left blank.For example, if the figure below referred to a descriptor to be changed, the new value of the
address field would b&2, and no other fields would be changed.

A2

Letters are used as abbreviations tdedéntiate the values that may appear in a fidlde seven
basic fields are indicated by the letté&rsd=, V, O, L, T, and P. Numerical suiixes (which may be thought
of as subscripts) are used as necessary to distinguish between values of the safifeugyger example,
Al, A32, and AN might be used to refer to addresdes,and F2 to flags, and so onTo make further
distinctions where appropriateandR are used to indicate integers and real numbers, respectively

5.2. BranchPoints

Program labels are included in thgyament lists of many macrosihese addresses are points to
which control may be transferred, depending on data supplied to the mbrcgeeral, some or all of the
branch points may be omitted in a macro célh omitted branch point signifies that control is to pass to
the next macro in line if the condition corresponding to the omitted branch point is sat&fiegikxample
ACOMP is called in the following forms:

ACOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC
ACOMP DESCR1,DESCR2,GTLOC,EQLOC
ACOMP DESCR1,DESCR2,GTLOC

ACOMP DESCR1,DESCR2,GTLOC,,LTLOC
ACOMP DESCR1,DESCR2,,EQLOC,LTLOC
ACOMP DESCR1,DESCR2,,EQLOC

ACOMP DESCR1,DESCR2,,,LTLOC

whereGTLOC, EQLOC, andLTLOC are addresses to whidCOMP may branch. ACOMP is not called
with all three branch points omitted, since that is not a meaningful oper&@iber macros such &JM
(g.v.) are often called with all branch points omitted.

Implementation of the macros must take omission of branch points into consideralti@mate
expansions, conditioned by the omission of branch points, may be used to generatéaientecetle.

5.3. Abbreviations
Several abbreviations are used in the descriptions that follbese are:

1. D is used for the addressing width of a descripton the IBM System/360, the machine addressing
unit is one byte, anD is eight.

2. Sis used for the addressing width of a specifter; 2D.

3. CPDis used for the number of characters stored per descriptor
4. lis used for (signed) integers.

5. Ris used for real numbers.

6. Eis used for the address width of a syntax table entry

7. Z is used to indicate the number of the last character in collating sequ@iaracters are
“ numbered’ f rom O toZ.

The data type coddsandR are defined in the SIL source prograifhe other codes are machine
dependent. Sebe COPY macro. byR andl respectively These symbols are defined in

5.4. Programming Notes

Programming notes are provided for some macro operatibns.notes are intended to point out
special cases, indicate implementation pitfalls, and to provide information about conditions that can be used
to improve the diciency of the implementation.

6. TheMacros

1. ACOMP (address comparison)

’ ACOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC

ACOMP is used to compare the address fields of two descripitws.comparison is arithmetic with
Al andA2 being considered as signed integdfsAl > A2, transfer is tadGTLOC. If A1 = A2, transfer is
to EQLOC. If Al < A2, transfer is td.TLOC.

Data Input t)ACOMP:

DESCR1 | AL | \ |

DESCR2 A2 | \ \ \

Programming Notes:
1. Al andA2 may be relocatable addresses.

2. SealsoLCOMP, ACOMPC, AEQL, AEQLC, and AEQLIC.

2. ACOMPC (address comparison with constant)

’ ACOMPC DESCR,N,GTLOC,EQLOC,LTLOC

ACOMPC is used to compare the address field of a descriptor to a con$tamtcomparison is
arithmetic withA being considered as a signed intedéA > N, transfer is taGTLOC. If A =N, transfer
is toEQLOC. If A <N, transfer is td.TLOC.

Data Input t)ACOMPC:

DESCR A \ \

Programming Notes:

1. A may be arelocatable address.
2. Nis never negative.

3. Nis often 0.

4. SeealsoACOMP, AEQL, AEQLC, and AEQLIC.

3. ADDLG (add to specifier length)

ADDLG SPEC,DESCR

ADDLG is used to add an integer to the length of a specifier
Data Input toADDLG:

SPEC | \ \ \ L

DESCR] \ \ \

Data Altered byADDLG:

SPEC] \ \ \ L+

Programming Notes:

1. Ilis always positive.

4. ADDSIB (add sibling to tree node)

ADDSIB DESCR1,DESCR2

ADDSIB is used to add a tree node as a sibling to another node.
Data Input to)ADDSIB:

DESCR1 | Al | \ |
DESCR2 A2 | | F2 | v2 |
AL+FATHER | A3 | F3 | v3 |
A+RSB [A4 | F4 [v4 |
A3+CODE | \ \ \

Data Altered byADDSIB:

A2+RSIB | A4 | F4 | v4 |
A2+FATHER | A3 | F3 | v3 |
Al+RSIB | A2 | F2 | v2 |
A3+CODE | \ T

Programming Notes:
1. ADDSIB is only used by compilation procedures.
2. FATHER, RSIB, and CODE are symbols defined in the source program.

3. SealsoADDSON andINSERT.

5. ADDSON (add son to tree node)

ADDSON DESCR1,DESCR2

ADDSON is used to add a tree node as a son to another node.
Data Input t)ADDSON:

DESCR1 | AL | F1 [V1 |
DESCR2 | A2 | F2 [V2 |
AL+LSON | A3 | F3 | v3 |
A1+CODE | \ \ |

Data Altered byADDSON:

A2+FATHER] Al \ F1 \ V1 \
A2+RSIB] A3 \ F3 \ V3 \
AL4LSON | A2 [F2 | v2 |
A1+CODE] \ \ l+1 \

Programming Notes:
1. ADDSON is only used by compilation procedures.
2. FATHER, LSON,RSIB, and CODE are symbols defined in the source program.

3. SeealsoADDSIB andINSERT.

6. ADJUST (compute adjusted addess)

ADJUST DESCR1,DESCR2,DESCR3

ADJUST is used to adjust the address field of a descriptor

-10 -

Data Input t)ADJUST:

DESCR2 | A2] \ \
DESCR3 A3 | \ \ \
A2 | A4 \ |

Data Altered byADJUST:

DESCR1 [A3+A4 | \ \

Programming Notes:

1. A3is always an address integer

7. ADREAL (add real numbers)

ADREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

ADREAL is used to add two real numberK. the result is out of the range available for real
numbers, transfer is LOC. Otherwise transfer is t8LOC.

Data Input t)ADREAL:

DESCR?2] R2 \ F2 \ V2 \

DESCR3 | R3] \ \

Data Altered byADREAL.:

DESCR1 [R2+R3 [F2 [V2 |

Programming Notes:

1. SeelsoDVREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

8. AEQL (addresses equal test)

| AEQL DESCR1,DESCR2,NELOC,EQLOC |

AEQL is used to compare the address fields of two descripldrs.comparison is arithmetic with
Al andA2 being considered as signed integerg&lf= A2, transfer is t&EQLOC. Otherwise transfer is to
NELOC.

-11 -

Data Input toAEQL:

DESCR1 | A1] \ \

DESCR2 A2 | \ \ \

Programming Notes:
1. Al andA2 may be relocatable addresses.

2. SeelsoVEQL, AEQLC, LEQLC, AEQLIC, ACOMP, and ACOMPC.

9. AEQLC (address equal to constant test)

| AEQLC DESCR,N,NELOC,EQLOC |

AEQLC is used to compare the address field of a descriptor to a con3tamtcomparison is
arithmetic with A being considered as a signed integdrA = N, transfer is toEQLOC. Otherwise
transfer is tdtNELOC.

Data Input toAEQLC:

DESCR] A \

Programming Notes:

1. A may be a relocatable address.
2. Nis never negative.

3. Nis often 0.

4. SeelsoLEQLC, AEQL, AEQLIC, ACOMP, and ACOMPC.

10. AEQLIC (address equal to constant indiect test)

| AEQLIC DESCR,N1,N2,NELOC,EQLOC |

AEQLIC is used to compare an indirectly specified address field of a descriptor to a cohstant.
comparison is arithmetic witA1 being considered as a signed intedéA2 = N2, transfer is t&EQLOC.
Otherwise transfer is tdELOC.

-12 -

Data Input t)AEQLIC:

DESCR | A1] \ \

A1+N1 | A2] \ \

Programming Notes:

1. A2 may be a relocatable address.
2. N2 is never negative.

3. Nlis always zero.

4. SeealsoAEQL, AEQLC, LEQLC, ACOMP, and ACOMPC.

11. APDSP (append specifier)

APDSP SPEC1,SPEC2

APDSP is used to append one specified string to another specified string.
Data Input t)APDSP:

speci [AT | | ol [U]
spec2 [Ao o [»]
A1+01 | cu [.. | ci |
A2+02 | ca | .. | ca2 |

Data Altered byAPDSP:

SPEC1 | AL \ | 01 | L1+L2 |

Al+01 | cut | .. Jcui| ca | .. [ca2]

Programming Notes:
1. IfL1=0,C2lis placed af1+O1.

2. Thestorage followingC1L1 is always adequate f@21...C2L2.

-13-

12. ARRAY (assemble array of descriptors)

L ARRAY N \

ARRAY is used to assemble an array of descriptors.
Data Assembled bRRAY:

L | o | o | o

L+(N-1*D | 0 0 0

Programming Notes:

1. Allfields of all descriptors assembled ARRAY mustbe zero when program execution begins.

13. BKSIZE (get block size)

BKSIZE DESCR1,DESCR2

BKSIZE is used to determine the amount of storage occupied by a block or string striitteiféag
field of the descriptor & distinguishes between string structures and blotkB.contains the flagTTL,
then

F(V)=D*(4+[(V-1)/CPD+1])

where[V] is the integer part of andCPD is the number of characters stored per descrigitbe constant

4 occurs because there are 4 descriptors (including the title) in a string structure in addition to the string
itself. Theexpression in brackets represents the number of descriptors required for a stroftacdcters.

If F does not contain the fl&TTL, thenF(V) = V+D.

Data Input taBBKSIZE:

DESCR2 A] \ \

A | [F [v |

Data Altered by\BKSIZE:

DESCR1 | Fv | o | o |

Programming Notes:

1. SeealsoGETLTH.

-14 -

14. BKSPCE (backspace ecord)

BKSPCE DESCR\

BKSPCE is used to back space one record on the file associated with unit referencelnumber
Data Input taBBKSPCE:

DESCR I

Programming Notes:
1. SeealsoENFILE andREWIND.

2. Referto Section 2.1 for a discussion of unit reference numbers.

15. BRANCH (branch to program location)

BRANCH LOC,PROC |

BRANCH is used to alter the flow of program control by branchingQ€. If PROC is given, it is
the procedure in whichOC occurs. IfPROC is omitted,LOC is in the current procedure.

Programming Notes:

1. SealsoPROC.

16. BRANIC (branch indir ect with offset constant)

BRANIC DESCRN\

BRANIC is used to alter the flow of program control by branching indirectly to the operation at
LOC.

Data Input ta(BRANIC:

DESCR A] \ \

A+N | Loc | \

Programming Notes:

1. Nis always zero

-15-

17. BUFFER (assemble buffer of blank characters)

LOC BUFFER N\

BUFFER is used to assemble a stringhbblank characters.
Data Assembled bBUFFER:

LOC | |]

Programming Notes:

1. All characters of the string assembledBYy~FER mustbe blank (not zero) when program execution
begins.

18. CHKVAL (check value)

CHKVAL DESCR1,DESCR2,SPEC,GTLOC,EQLOC,LTLOC ‘

CHKVAL is used to compare an integer to the length of a specifier plus another. ittegd? > 11,
transfer is taGTLOC. If L+I2 = I1, transfer is tEQLOC. If L+I2 < 11, transfer is td.-TLOC.

Data Input taCHKVAL.:

SPEC | \ \ \ L]

DESCR1 o] \ \

DESCR212 | \ \ \

Programming Notes:
1. 11,12, andL are always positive integers.

2. CHKVAL is used only in pattern matching.

19. CLERTB (clear syntax table)

CLERTB TABLE,KEY

CLERTB is used to set the indicator fields of all entries of a syntax table to a congEhimay be
one of four values:

-16 -

CONTIN
ERROR
STOP
STOPSH

The indicator field of each entry ®ABLE is set toT whereT is the indicator that corresponds to the
value ofKEY.

Data Altered byCLERTB for ERROR, STOP, or STOPSH:

TABLE] T

TABLE+Z*E | T] \

Data Altered byCLERTB for CONTIN:

TABLE | TABLE | 0 | |

TABLE+Z*E TABLE 0

Programming Notes:
1. See€Section 4.2.

2. SeealsoPLUGTB.

20. COPY (copy file into assembly)

COPY HLE\

COPY is used to copy a file of machine-dependent data into the source proG@RY occurs
three times in the assembly:

COPY MDATA
COPY MLINK
COPY PARMS

MLINK andPARMS are copied at the beginning of the SNOBOL4 assenMIPATA is copied in the data
region.

MDATA is a file of machine-dependent dati.contains data used in the implementation of the
macros and for strings that depend on the character set of an individual machine or that represent other
problems that prevent a machine-independent representatiese are:

1. ALPHA, a gring that consists of all characters arranged in the order of their internal numerical

-17 -

representation (collating sequence).

2. AMPST, a gring consisting of a single ampersand, or whatever character is used to represent the
keyword operator in the source language.

3. COLSTR, a dring of two characters consisting of a colon followed by a blank.

4. QTSTR, a gring consisting of a single quotation mark, or whatever character is used to represent a
guotation mark in the source language.

These strings of characters are pointed to by the specdfldP$iSP, AMPSP, COLSP, and QTSP
respectively

MLINK is a file of entry points and external symbol names that describe linkages used to access
machine-language subroutines and 1/O packages.

PARMS is a file of machine-dependent constants (equivalendespntains constants used in the
implementation of the macros and definitions of symbolsese are:

1. ALPHSZ, the number of characters in the character set for the madqih®HSZ is 256 for the IBM
System/360.)

2. CPA, the number of characters per machine addressing (€A is 1 for the IBM System/360, i.e.,
one character per byte.)

3. DESCR, the address width of a descriptor

4. FNC, aflag used to identify function descriptors.

5. MARK, a flag used to identify descriptors that are marked titles.

6. PTR, aflag used to identify descriptors pointing into SNOBOL4 dynamic storage.

7. SIZLIM, the value of the Igest integer that can be stored in the value field of a descriptor

8. SPEC, the address width of a specifier

9. STTL, aflag used to identify descriptors that are titles of string structures.

10. TTL, a flag used to identify descriptors that are titles of blocks.

11. UNITI, the number of the standard input uritNITI is 5 for the IBM System/360 implementation.

12. UNITO, the number of the standard print output uniiNITO is 6 for the IBM System/360
implementation.

13. UNITP, the number of the standard punch output utdNITP is 7 for the IBM System/360
implementation.

CSTACK andOSTACK, the current end old stack pointers, respectjaiguld be defined in one of
the COPY files. Thesepointers may either be in registers or in the address fields of descriptors, depending
on how the stack management macros are implementeB(&¢ andRCALL, eg.). Ifthese pointers are
implemented as registers, they should be defin@ARMS. If they are implemented in storage locations,
they should be defined MDATA.

-18 -

Programming Notes:

1. COPY may be implemented in a variety of waySOPY may, for example, simply expand into the
data required, depending on the value of iggiarent as given above.

2. Anyof theCOPY segments can be used to incorporate other machine-dependent data.

21. CPYPAT (copy pattern)

CPYPAT DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCRG6

CPYPAT is used to copy a patterfrirst set

R1=A1
R2 = A2
R3 = A6

whereR1, R2, and R3 are temporary locationsSections of the pattern are copied for successive values of
R1 andR2. After copying each section, set

R3 = R3-(1+V7)*D
Then set

R1 = R1+(1+V7)*D
R2 = R2+(1+V7)*D

If R3 > 0, continue, copying the next sectio@therwise the operation is complefehe final value oR1
is inserted in the address field@ESCRL1.

The functiond=1 andF2 are defined as follows:

F1(X)=0if X=0
F1(X) = X+A4 otherwise

F2(X)=A5if X=0
F2(X) = X+A4 otherwise

-19 -

Initial Data Input tocCPYPAT:

DESCR1 | A1] \ \

DESCR2 A2 | \ \ \

DESCR3 A3 | \ \ |

DESCR4 | A1 \ \

DESCR5 A5 | \ \ \

DESCR6 A6 | \ \ |

Data Input taCPYPAT for Successive 8lues ofR2:

R2+D | A7 | FT | v7 |
R2+2D | A8 | 0 | va |
R2+3D | A | 0o | vo |

Data Altered byCPYPAT for Successive 8Mues ofR1:

R1+D | A7 | FT | v7 |
R1+2D | FI(A8) | 0 | F2(v8) |
R1+3D [A9+A3 | 0 | VO+A3

Additional Data Input for SuccessivaMes ofR2 if V7 = 3:

R2+4D] A10 \ F10 \ V10 \

Additional Data Altered for SuccessivalMes ofR1 if V3 =7:

R1+4D] A10 \ F10 \ V10 \

Data Altered when Copying is Complete:

DESCR1 | R1 | \ |

-20 -

22. DATE (getdate)

DATE SPEC

DATE is used to obtain the current dat&.character representation of the current date is placed in
BUFFER.

Data Altered byDATE:

SPEC]BUFFER\ 0 \ 0 \ 0 L

BUFFER | c [.. | cL |

Programming Notes:
1. Thechoice of representation for the date is not important so far as the source language is concerned.
Thus

April 1, 1981
04/01/81
4:1:81
81.092

are all acceptable.
2. BUFFER is local toDATE and its old contents may be overwritten by a subsequent T,
3. DATE is used only in the SNOBOLRATE function.

4. Implementatiorof DATE, as auch, is not essentialn this caseDATE should set the length &PEC
to zero and do nothing else.

23. DECRA (decrement address)

DECRA DESCR,N \

DECRA is used to decrement the address field of a descrifatisrconsidered as a signed integer

Data Input tdDECRA:

DESCR A] \ \

Data Altered byDECRA:

DESCR | AN | \ \

-21 -

Programming Notes:

1. A maybe a relocatable address.
2. Nis always positive.

3. Nisoften 1 oD.

4. A-N may be negative.

5. SealsoINCRA.

24. DEQL (descriptor equal test)

| DEQL DESCR1,DESCR2,NELOC,EQLOC |

DEQL is used to compare two descripton$. Al = A2, F1 = F2, and V1 = V2, transfer is to
EQLOC. Otherwise transfer is tNELOC.

Data Input tdDEQL:

DESCR1] Al \ F1 \ V1 \

DESCR?2] A2 \ F2 \ V2 \

Programming Notes:

1. Allfields of the two descriptors must identicalfor transfer tcEQLOC.

25. DESCR (assemble descriptor)

LOC DESCR AFN\

DESCR assembles a descriptor with specified address, flag, and value fields.

Data Assembled bRPESCR:

LOC] A \ F Vv

Programming Notes:

1. Anyor all of A, F, and V may be omitted.A zero field must be assembled when the corresponding
argument is omitted.

-22-

26. DIVIDE (divide integers)

DIVIDE DESCR1,DESCR2,DESCR3,FLOC,SLOC

DIVIDE is used to divide one integer by anoth&ny remainder is discarded-hat is, the result is
truncated, not roundedf | = 0, transfer is td-LOC. Otherwise transfer is t8LOC.

Data Input tdDIVIDE:

DESCR2 . A | F | Vv |

DESCR3 | \ \ |

Data Altered byDIVIDE:

DESCR1 Al F | Vv |

Programming Notes:

1. A may be a relocatable address.

27. DVREAL (divide real numbers)

DVREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

DVREAL is used to divide one real number by anotHéiR3 = 0 or the result is out of the range
available for real numbers, transfer iFI00C. Otherwise transfer is tS8LOC.

Data Input tdDVREAL.:

DESCR2] R2 \ F2 \ V2 \

DESCR3 | R3 | \ |

Data Altered byDVREAL:

DESCR1] R2/R3 \ F2 \ V2 \

Programming Notes:

1. In addition to use in source-language arithmeb¥REAL is used in the computation of statistics
published at the end of a SNOBOL4 run.

2. SeealsoADREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

-23-

28. END (end assembly)

END \

END is used to terminate assembly of the SNOBOL4 systéwccurs only once and is the last card
of the assembly

29. ENDEX (end execution of SNOBOLA4 run)

ENDEX DESCR\

ENDEX is used to terminate execution of a SNOBOL4 r&eNDEX is the last instruction executed
and is responsible for returning properly to the environment that initiated the SNOBOLA4f rluis
nonzero, a post-mortem dump of user core should be given.

Data Input tcENDEX:

DESCR I

Programming Notes:

1. If adump is not given, the keywo&ABEND will not have its specified ffct. Nothingelse will be
affected.

2. Onthe IBM System/360, ifis nonzero, an abend dump is given with a user cote of

3. SealsolNIT.

30. ENFILE (write end of file)

ENFILE DESCR\

ENFILE is used to write an end-of-file on (close) the file associated with unit reference number
Data Input tacENFILE:

DESCR | \ \

Programming Notes:
1. SeealsoBKSPCE andREWIND.

2. Referto Section 2.1 for a discussion of unit reference numbers.

-24 -

31. EQU (define symbol equivalence)

| SYMBOL EQU N |

EQU is used to assign, at assembly time, the vali¢tofSYMBOL.

32. EXPINT (exponentiate integers)

EXPINT DESCR1,DESCR2,DESCR3,FLOC,SLOC

EXPINT is used to raise an integer to an integer povfetl = 0 andI2 is not positive, or if the
result is out of the range available for integers, transferkre@C. Otherwise transfer is tSLOC.

Data Input tadEXPINT:

DESCR2 o] F | Vv |

DESCR3 2] \ |

Data Altered byEXPINT:

DESCR1] 11%*12 \ F \ Vv \

33. EXREAL (exponentiate eal numbers)

EXREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

EXREAL is used to raise a real number to a real powfahe result is not a real number or is out of
the range available for real numbers, transfer H4OC. Otherwise transfer is tSLOC.

Data Input tcEXREAL:

DESCR2 | R1L | F | v |

DESCR3 | R2 | \ \

Data Altered b\EXREAL:

DESCR1] R1**R2 \ F \ Y, \

-25-

34. FORMAT (assemble format string)

LOC FORMAT 'C1...CL’ \

FORMAT is used to assemble the characters of a format.
Data Assembled bORMAT:

LOC] C1 \ CL

Programming Notes:

1. Thecharacters assembled BYORMAT are treated as ariundigested’ f ormat by FORRAN IV
routines.

35. FSHRTN (foreshorten specifier)

FSHRTN SPEC,N \

FSHRTN is used to exclude initial characters from a string specification.

Data Input tdc<SHRTN:

SPEC | \ \ | o [L |

Data Altered byrSHRTN:

SPEC] \ \ | ON [LN |

Programming Notes:
1. L-Nis never negative.

2. SeealsoREMSP.

36. GETAC (get address with offset constant)

GETAC DESCR1,DESCR2,N ‘

GETAC is used to get an address field with afisetfconstant.

-26 -

Data Input tadGETAC:

DESCR2 | A2] \ \

A2+N A] \ \

Data Altered byGETAC:

DESCR1 A \ |

Programming Notes:
1. N may be negative.

2. SealsoPUTAC, GETDC, and PUTDC.

37. GETBAL (get parenthesis balanced string)

GETBAL SPEC,DESCR,FLOC,SLOC

GETBAL is used to get the specification of a balanced substfihg. string starting afL+1 and
ending atCL+N is examined to determine the shortest balanced sub§itind,...,CL+J. J is determined
according to the following rules:

If CL+1 is not a parenthesis, thdn= 1.

If CL+1 is a left parenthesis, thehis the least integer such that+1...CL+J is balanced with respect to
parentheses in the usual algebraic sense.

If CL+1 is a right parenthesis, or if no such balanced string exists, transféfli©t©. OtherwiseSPEC
is modified as indicated and transfer iStadOC.

Data Input tadGETBAL:

SPEC A \ | O L
DESCR N] \
A+O | c1 | .. | cL [cL+1| .. |CL+N]

Data Altered byGETBAL:

SPEC A \ B

-27 -

38. GETD (get descriptor)

GETD DESCR1,DESCR2,DESCR3

GETD is used to get a descriptor
Data Input tadGETD:

DESCR2 | A2 | \ |
DESCR3 A3 | \ \ |
A2+A3 A] F | Vv

Data Altered byGETD:

DESCR1 . A | F | Vv |

Programming Notes:

1. SeelsoGETDC, PUTD, and PUTDC.

39. GETDC (get descriptor with offset constant)

GETDC DESCRLDESCRZN‘

GETDC is used to get a descriptor with arfset constant.
Data Input tadGETDC:

DESCR2 | A2 | \ |

A2+N A] F | VvV

Data Altered byGETDC:

DESCR1 A] F | v |

Programming Notes:

1. SeelsoGETD, PUTDC, and PUTD.

-28 -

40. GETLG (get length of specifier)

GETLG DESCR,SPEC

GETLG is used to get the length of a specifier
Data Input tadGETLG:

SPEC | \ \ \ L

Data Altered byGETLG:

DESCR . L | o | o |

Programming Notes:

1. SealsoPUTLG.

41. GETLTH (get length for string structure)

GETLTH DESCR1,DESCR2 ‘

GETLTH is used to determine the amount of storage required for a string stru€h@e@amount of
storage is given by the formula

F(L)=D*(3+[(L-1)/CPD+1])

where[L] is the integer part df andCPD is the numbers of characters stored per descrififoe constant
3 accounts for the three descriptors in a string structure in addition to the string Tiselexpression in
brackets represents the number of descriptors required for a sttirgpafacters.

Data Input tadGETLTH:

DESCR2] L] \ \

Data Altered byGETLTH:

DESCR1 | FO | o | o |

Programming Notes:

1. SealsoBKSIZE.

-29 -

42. GETSIZ (getsize)

GETSIZ DESCR1,DESCR2

GETSIZ is used to get the size from the value field of a title descriptor

Data Input taGETSIZ:

DESCR2 A \ |

A | | [v]

Data Altered byGETSIZ:

DESCR1 v] 0 \ 0o |

Programming Notes:

1. SealsoSETSIZ.

43. GETSPC (get specifier with constant offset)

GETSPC SPEC,DESCR,N ‘

GETSPC is used to get a specifier
Data Input totGETSPC.:

DESCR | A1] \ \

AL+N . A | F | v [o | L

Data Altered byGETSPC:

SPEC A] F | v | o | L

Programming Notes:

1. SealsoPUTSPC.

-30-

44. INCRA (increment address)

INCRA DESCR,N

INCRA is used to increment the address field of a descriptor
Data Input tdNCRA:

DESCR A \ |

Data Altered byNCRA:

DESCR [AN] \ \

Programming Notes:

1. A may be arelocatable address.
2. Ais never negative.

3. Nis always positive.

4. Nis often 1 oD.

5. SeealsoDECRA andINCRV.

45. INCRV (increment value field)

] INCRV DESCRN\

INCRV is used to increment the value field of a descriptiois considered as an unsigned
(nonnegative) integer

Data Input tdNCRV:

DESCR] \ \ \

Data Altered by{NCRV:

DESCR] \ [N

-31-

Programming Notes:
1. Nis always positive.
2. Nis often 1.

3. SealsoINCRA.

46. INIT (initialize SNOBOL4 run)

INIT \

INIT is used to initialize a SNOBOL4 rutNIT is the first instruction executed and is responsible for
performing any initialization necessaryhe operation is machine and system dependgygically, INIT
sets program masks and the values of vertain registers.

In addition to any initialization required for a particular system and madhifie also performs the
following initialization for the SNOBOL4 systemDynamic storage is initializedThe address fields of
FRSGPT andHDSGPT are set to point to the first descriptor in dynamic stordgee address field of
TLSGP1 is set to the first descriptor past the end of dynamic stor@gace for dynamic storage may be
preallocated or obtained from the operating systeriNbyy. The timer is initialized for subsequent use by
the MSTIME macro (g.Y).

Programming Notes:

1. SealsoENDEX.

47. INSERT (insert node in tree)

INSERT DESCR1,DESCR2

INSERT is used to insert a tree node above another node.
Data Input tdNSERT:

DESCRT | AL | F1 [V1 |
DESCR2 | A2 | F2 [V2 |
AL+FATHER | A3 [F3 | v3 |
A+LSON | A4 | F4 | v4 |
A2+CODE | \ \ |

-32-

Data Altered byNSERT:

AL+FATHER | A2 | F2 | v2 |
Ad+RSIB [A2 | F2 | v2 |
A2+FATHER | A3 | F3 | v3 |
A2+LSON | A1 | F1 | vi |
A2+CODE | \ !

Programming Notes:

1. Sincethe fields of the descriptor &1+FATHER are used in the data to be altered, care should be
taken not to modify this descriptor until its former values have been used.

2. INSERT is only used by compilation procedures.
3. FATHER, LSON, RSIB, and CODE are symbols defined in the source program.

4. SeealsoADDSIB andADDSON.

48. INTRL (convert integer to real number)

INTRL DESCR1,DESCR2 ‘

INTRL is used to convert a (signed) integer to a real nuniR@) is the real number corresponding
tol.

Data Input tdNTRL:

DESCR2] | \ \ \

Data Altered byNTRL:

DESCR1 | RO | o | R |

Programming Notes:

1. Ris a symbol defined in the source program and is the code for the real data type.

-33-

49. INTSPC (convert integer to specifier)

INTSPC SPEC,DESCR |

INTSPC is used to convert a (signed) integer to a specified string.

Data Input tdNTSPC:

DESCR | | \ \ |

Data Altered byNTSPC:

SPEC] BUFFER \ 0 \ 0 \ ¢ L

BUFFER+O y C1 \ N \ CL \

Programming Notes:

1. C1...CL should be a*“normalized’ string corresponding to the integerThat is, it should contain no
leading zeroes and should begin with a minus sigisihegative.

2. BUFFER is local toINTSPC and its contents may be overwritten by a subsequent usd $PC.

3. SealsoSPCINT.

50. ISTACK (initialize stack)

ISTACK \

ISTACK is used to initialize the system stack.
Data Altered bySTACK:

OSTACK] 0 \ \ \

CSTACK | STACK | \

Programming Notes:
1. STACK s a program symbol whose value is the address of the first descriptor of the system stack.

2. SealsoPSTACK, RCALL, and RRTURN.

51. LCOMP (length comparison)

LCOMP SPEC1,SPEC2,GTLOC,EQLOC,LTLOC

LCOMP is used to compare the lengths of two specifiéirtl > L2, transfer is taGTLOC. If L1 =
L2, transfer is tEQLOC. If L1 < L2, transfer is td.TLOC.

Data Input td.COMP:

SPEC1 | \ \ \ B

SPEC2L2 | \ \ \ \ \

Programming Notes:

1. SeelsoACOMP, RCOMP, and LEQLC.

52. LEQLC (length equal to constant test)

] LEQLC SPEC,N,NELOC,EQLOC |

LEQLC is used to compare the length of a specifier to a condfaht= N, transfer is tcEQLOC.
Otherwise transfer is tNELOC.

Data Input td_.EQLC:

SPEC | \ L

Programming Notes:
1. L andN are never negative.

2. SeealsoLCOMP, AEQLC, and AEQLIC.

53. LEXCMP (lexical comparison of strings)

’ LEXCMP SPEC1,SPEC2,GTLOC,EQLOC,LTLOC ‘

LEXCMP is used to compare two strings lexicographically (ieecording to their alphabetical
ordering). IfC11...C1N1 < C21...C2M, transfer is taGTLOC. If C11...C1N1 = C21...C2M, transfer is
to EQLOC. If C11...C1N1 > C21...C2M, transfer is td.TLOC.

-35-

Data Input td.EXCMP:

spect [M| | ol [N
spec [A2 | | I
A1+01 | cu | .. | CIN
A2+02 | ca | .. | ca™m

Programming Notes:

1. Thelexicographical ordering is machine dependent and is determined by the numerical order of the
internal representation of the characters for a particular machine.

2. Astring that is an initial substring of another string is lexicographically less than that Sthagis
ABC is less tharABCA.

3. Thenull (zero-length) string is lexicographically less than any other string.

4. Two strings are equal if and only if they are of the same length and are identical character by.character
5. Byfar the most frequent use bEXCMP is to determine whether two strings are the same farelift.

In these case&TLOC and LTLOC will specify the same location or both be omitteBecause of the

frequency of such use, it is desirable to handle this case spesially a test for equality usually can be
performed more étiently than the general test.

54. LHERE (define location hee)

LOC LHERE \

LHERE is used to establish the equivalenc&©fC as the location of the next program instruction.

Programming Notes:

1. LHERE is equivalent to the familidgQU *. Similarly

LOC LHERE
oP

is equivalent to
LOC OP

-36-

55. LINK (link to external function)

LINK DESCR1,DESCR2,DESCR3,DESCR4,FLOC,SLOC

LINK is used to link to an external functioA2 is a pointer to an gument list ofN descriptors.A4
is the address of the external function to be callil.is the date type expected for the resulting value.
The returned value is placed DESCRL1. If the external function signals failure, transfer ig~tdOC.
Otherwise transfer is t8LOC.

Data Input td_INK:

DESCR1 | \ | vi |
DESCR2 | A2 | \ \
bEscRs [N |]
DESCR4 | A4 | \ |

Data Altered by INK:

DESCR1 A] F | v |

Programming Notes:
1. LINK is a system-dependent operation.
2. LINK need not be implementedli©OAD is not. In this casel.INK should branch ttNTR10.

3. SeealsoLOAD andUNLOAD.

56. LINKOR (link ‘“or’" fi elds of pattern nodes)

LINKOR DESCR1,DESCR2 ‘

LINKOR links through “ or™ (alternative) fields of pattern nodes until the end, indicated by a zero
field, is reachedThis zero field is replaced by

-37 -

Data Input td_INKOR:

DESCR1 A] \ \
DESCR2] \ \ \
A+2D o \ |
A+2D+I1 2] \ \
A+2D+IN] 0 \ \ \

Data Altered byt INKOR:

A+2D+IN | | \ \

57. LOAD (load external function)

LOAD DESCR,SPEC1,SPEC2,FLOC,SLOC

LOAD is used to load an external functio811...C1L1 is the name of the external function to be
loaded from a libraryC21...C2L2 is the name of the libraryA3 is the address of the entry poinf.the
external function is loaded, transfer isSSbOC. Otherwise transfer is tBLOC.

Data Input td_OAD:

spect [AL] ot [u]
spec2 [A2 | | o []
A1+01 | cu [.. | ci |
A2+02 | ca | .. | caz2 |

Data Altered byt OAD:

DESCR | A3] \ \

-38-

Programming Notes:
1. LOAD is a system-dependent operation.

2. LOAD need not be implemented as sudhit is not, the built-in function.OAD will not be available,
and an error comment should be generated by branchiiyDd-.

3. Onthe IBM System/360LOAD uses the OS macro LOAD to bring an external function from the
library whose DDNAME is specified i21...C2L2.

4. SeealsoLINK andUNLOAD.

58. LOCAPT (locate attribute pair by type)

LOCAPT DESCR1,DESCR2,DESCR3,FLOC,SLOC

LOCAPT is used to locate the'type™ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are ittype-value” pairs. Odd-numberediescriptors are“type”
descriptors. Thdist starting atA+D is searched, comparing descriptorsAaD, A+3D, ... for the first
descriptor whose value is equal to the valu®BBBCR3. If a descriptor equal tDESCR3 is not found,
transfer is td-LOC. Otherwise transfer is t8LOC.

Data Input td . OCAPT:

DESCR2 . A | F | Vv |
DESCR3 | A3 | F3 [V3 |
A] \ | 2K*D |
A+D | AL | Fl | vil |
A+D+21*D A3 F3 V3

A+2K*D] \ \ \

Data Altered byt OCAPT:

DESCR1]A+2|*D\ F \ V \

-39 -

Programming Notes:
1. Notethat the address &fESCR1 is set to one descriptor less then the descriptor that is located.

2. SealsoLOCAPV.

59. LOCAPV (locate attribute pair by value)

LOCAPV DESCR1,DESCR2,DESCR3,FLOC,SLOC

LOCAPV is used to locate thée'value” descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are ihtype-value” pairs. Even-numberedescriptors are* value”
descriptors. Théist starting atA+D is searched, comparing descriptorsAa®D, A+4D, ... for the first
descriptor whose value is equal to the valu®BBBCR3. If a descriptor equal tdESCR3 is not found,
transfer is td-LOC. Otherwise transfer is t8LOC.

Data Input td . OCAPV:

DESCR2 . A | F | Vv |
DESCR3 | A3 | F3 [Vv3 |
A] \ | 2K*D |
A+2D | A2 | F12 | Vvi2 |
A+2D+21*D A3 F3 V3

A+2K*D] \ \ \

Data Altered byt OCAPV:

DESCR1]A+2|*D\ F \ V \

Programming Notes:
1. Notethat the address &fESCRL1 is set to two descriptors less than the descriptor that is located.

2. SealsoLOCAPT.

-40 -

60. LOCSP (locate specifier to string)

LOCSP SPEC,DESCR |

LOCSP is used to obtain a specifier to a string given in a string struc&P® is the number of
characters per descriptor

Data Input td . OCSP:

DESCR | A | F [VvV |

A | | | |

Data Altered by OCSP if A # O:

SPEC A] F | Vv | #cpPD | \

Data Altered by OCSP if A =0O:

SPEC | | | | [0 |

Programming Notes:

1. If A= 0, the value oDESCR represents the null (zero-length) string and is handled as a special case
as indicated.The other fields c8PEC are unchanged in this case.

61. LVALUE (get least length value)

LVALUE DESCR1,DESCR2

LVALUE is used to get the least value of address fields in a chain of pattern mbdesddress field
of DESCRL1 is set td where

I = min(l0,...,IK)

-41 -

Data Input td_ VALUE:

DESCR2 | A | \ \
oD [N]
N I
A+N1#2D [N2 | | |
a3 []
AmKi2D [0 I
ARNK+3D [K] | |

Data Altered byt VALUE:

DESCR1] | \ 0 \ 0o |

Programming Notes:
1. 10,.../JK are all nonnegative.

2. Ais never zero, bulll may be.

62. MAKNOD (make pattern node)

MAKNOD DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCR6

MAKNOD is used to make a node for a patteDESCR6 may be omitted.If it is, one less
descriptor is modified, but the two forms are otherwise the same.

Data Input taVJAKNOD:

DESCR2 | A2 | F2 [V2 |
DESCR3 | A3 | \ |
DESCR4 A4 | \ \ \
DESCR5 A5 | | F5 | vs5 |

-42 -

Additional Data Input iDESCRG6 is Given:

DESCR6 | A6 | F6 | V6 |

Data Altered byMAKNOD:

DESCR1I | A2 | F2 [V2 |
A2+D | A5 | F5 | V5 |
po0 [AE]]
P13 A3 | |]

Additional Data Altered iDESCRG6 is Given:

A2+4D | A6 | F6 | V6 |

Programming Notes:

1. Asindicated, there are two forms MAKNOD. If DESCRS6 is given, an additional descriptor if
modified, but otherwise the two forms are the same.

2. DESCR1 must be changddst, snce DESCR6 may be the same descriptorRIESCR1.

3. MAKNOD is used only for constructing patterns.

63. MNREAL (minus real number)

MNREAL DESCR1,DESCR2

MNREAL is used to change the sign of a real number
Data Input taVINREAL.:

DESCR2 . R | F | Vv |

Data Altered byMNREAL:

DESCR1 | R] F | v |

Programming Notes:
1. R may be negative.

2. SeealsoMNSINT, ADREAL, DVREAL, EXREAL, MPREAL, and SBREAL.

-43-

64. MNSINT (minus integer)

MNSINT DESCR1,DESCR2,FLOC,SLOC

MNSINT is used to change the sign of an intedérl exceeds the maximum integé&ansfer is to
FLOC. Otherwise transfer is t8LOC.

Data Input taINSINT:

DESCR2 | | | F [v |

Data Altered byMNSINT:

DESCR1 E \ F | v |

Programming Notes:
1. Imay be negative.

2. SeealsoMNREAL.

65. MOVA (move address)

MOVA DESCR1,DESCR2

MOVA is used to move an address field from one descriptor to another

Data Input taMOVA:

DESCR2 A] \ \

Data Altered byMOVA:

DESCR1 A] \ \

Programming Notes:

1. SealsoMOVD andMOVV.

66. MOVBLK (move block of descriptors)

MOVBLK DESCR1,DESCR2,DESCR3

MOVBLK is used to move (copy) a block of descriptors.
Data Input taMOVBLK:

DESCR1 | AL | \ |
DESCR2 A2 | \ \ \
DESCR3 | DN | \ \
A2+D | A21 | F21 | v21 |
A2+(D*N) | A2N [F2N | V2N |

Data Altered byMOVBLK:

A1+D] A21 \ F21 \ V21 \

AL+(D*N) | A2N F2N V2N

Programming Notes:
1. Notethat the descriptor &1 is not altered.

2. Thearea into which the move is made may overlap the area from which the move isThadenly
occurs wherAl is less thai\2. Care must be taken to handle this case correctly

67. MOVD (move descriptor)

MOVD DESCR1,DESCR2

MOVD is used to move (copy) a descriptor from one location to another

-45 -

Data Input taMOVD:

DESCR2 A] F | v |

Data Altered byMOVD:

DESCR1 A] F | Vv |

Programming Notes:

1. SealsoMOVA andMOVV.

68. MOVDIC (move descriptor indirect with constant offset)

MOVDIC DESCR1,N1,DESCR2,N2 ‘

MOVDIC is used to move a descriptor that is indirectly specified withfaatafonstant.
Data Input taMOVDIC:

DESCR1 | A1] \ \
DESCR2 A2 | \ \ |
A2+N2 A] F | VvV

Data Altered byMOVDIC:

A1+N1 A] F | Vv

Programming Notes:

1. SealsoMOVD, GETDC, and PUTDC.

69. MOVV (move value field)

MOVV DESCR1,DESCR2

MOVYV is used to move a value field from one descriptor to another
Data Input taMOVV:

DESCR2 \%

- 46 -

Data Altered byMOVV:

DESCR1] Vv

Programming Notes:

1. SeealsoMOVA andMOVD.

70. MPREAL (multiply r eal numbers)

MPREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

MPREAL is used to multiply two real numberdf. the result is out of the range available for real
numbers, transfer is LOC. Otherwise transfer is t8LOC.

Data Input taMPREAL:

DESCR?2] R2 \ F2 \ V2 \

DESCR3 | R3] \ \

Data Altered byMPREAL:

DESCR1] R2*R3 \ F2 \ V2 \

Programming Notes:

1. SeelsoADREAL, DVREAL, EXREAL, MNREAL, and SBREAL.

71. MSTIME (get millisecond time)

MSTIME DESCR\

MSTIME is used to get the millisecond time.
Data Altered byMSTIME:

DESCR] TIME \ 0 0

-47 -

Programming Notes:

1. Theorigin with respect to which the time is obtained is not importdiie SNOBOL4 system deals
only with differences in times.

2. Thetime units should be milliseconds, but accuracy is not critical.

3. MSTIME is used in program tracing, the SNOBOTLME function, and in statistics printed upon
termination of a SNOBOL4 run.

4. ltis not critically important thaMSTIME be implemented as suclif it is not, the address field of
DESCR should be set to zero also.

5. SealsolINIT.

72. MULT (multiply integers)

MULT DESCR1,DESCR2,DESCR3,FLOC,SLOC ‘

MULT is used to multiply two integerdn the event of overflontransfer is toFLOC. Otherwise,
transfer is t&SLOC.

Data Input taVMIULT:

DESCR2 2 | Fr2 | v2 |

DESCR3 B] \ \

Data Altered byMULT:

DESCR1] 12*13 \ F2 \ V2 \

Programming Notes:

1. Thetest for success and failure is used in only two calls of this mateoce the code to make the
check is not needed in most cases.

2. DESCRI1 andDESCR?2 are often the same.

3. SealsoMULTC andDIVIDE.

-48 -

73. MULTC (multiply addr ess by constant)

MULTC DESCRLDESCRZN‘

MULTC is used to multiply an integer by a constant.
Data Input taMULTC:

DESCR2 | | \ \ |

Data Altered byMULTC:

DESCR1 . PN [0o | o |

Programming Notes:
1. I*N never exceeds the range available for integers.
2. DESCR1 andDESCR?2 are often the same.

3. Nis oftenD, which typically may be implemented by a shift, or simply by no operatibnisf1 for a
particular machine.

4. SeealsoMULT.

74. ORDVST (order variable storage)

ORDVST \

ORDVST is used to alphabetically order variables in SNOBOL4 dynamic stordgiables are
organized in a number of bins, each bin containing a linked list of variables as shown below
OBEND = OBSTRT+(OBSIZ-1)*D, whereOBSIZ is the number of bins and is defined in the source
program.

Bins of \ariables:

OBSTRT] Al \ \ \
OBSTRT+D y A2 \ \ \
OBEND AN

The addresse&l, A2, ..., AN point to the first variable in each biA zero value for any of these addresses
indicates there are no variables in that Bivithin each bin, variables are linked together

=49 -

Relevant Parts of aaviable:

A | | [L]
A+3*D | Al] \ \
A+4+D | ca | .]

L is the length of the stringThe string itself begins a&+4*D and occupies as many descriptor
locations as are necessadl is a link to the next variable in the biA zero value ofAl indicates the end
of the chain for that bin.

Programming Notes:

1. ORDVST is used only in ordering variables for a programmeguested post-mortem dump of
variable storage ORDVST need not be implemented as such, but may simply perform no operhtion.
this case, the post-mortem dump will not be alphabetized, but will be otherwise correct.

2. If ORDVST is implemented, it is easiest to put all variables in one long chain startbBSTRT.
The address fields of the descript@BSTRT+D,...OBSTRT+(OBSIZ-1)*D should then be set to zero.

3. Sincedynamic storage may contain many variables, some care must be taken to assure that the sorting
procedure is not excessively sloWariables whose values are the null string (zero address field and value
field containing the program symk®) should be omitted from the sort.

4. Sinceany character may appear in a string, the valuemafist be used to determine the length of the
string in a variable — characters following the string in the last descriptor are undefined.

75. OUTPUT (output record)

OUTPUT DESCR,FORMAT,(DESCR1,...,DESCRN) ‘

OUTPUT is used to output a list of items accordingR@RMAT. The output is put on the file
associated with unit reference numlbefThe formatC1...CL may specify literals and the conversion of
integers and real numbers given in the address fidlds AN.

-850 -

Data Input tadOUTPUT:

DESCR] | \ \ \
FORMAT | c | .. | c
DESCR1 | AL | \ |
DESCRN AN

Programming Notes:

1. SeealsoSTPRNT.

76. PLUGTB (plug syntax table)

PLUGTB TABLE,KEY,SPEC

PLUGTB is used to set selected indicator fields in the entries of a syntax table to a cdfdEént.
may be one of four values:

CONTIN
ERROR
STOP
STOPSH

The indicator fields of entries correspondingQa,...,CL are set toT whereT is the indicator that
corresponds to the value KEY.

Data Input tdAPLUGTB:

SPEC A] \ | © L

A+O | c [.. | cL |

Data Altered byPLUGTB for ERROR, STOP, or STOPSH:

TABLE+E*C1 | | T |

TABLE+E*CL T

-51 -

Data Altered byPLUGTB for CONTIN:

TABLE+E*C1] TABLE 0

TABLE+E*CL | TABLE 0

Programming Notes:
1. SeeSection 4.2.

2. SealsoCLERTB.

77. POP (pop descriptors from stack)

POP (DESCRL,..., DESCRN) |

POP is used to pop a list of descriptor$ tfe system stack.
Data Input tdPOP:

CSTACK A] \
A | AL | FP1L | v1 |
AD*N-1) | AN [FN | VN |

Data Altered byPOP:

CSTACK | A-(N*D) | \ \
DESCR1 | AL | FP1L | v1 |
DESCRN AN FN VN

-52 -

Programming Notes:

1. If A-(N*D) < STACK, gack underflow occursThis condition indicates a programming error in the
implementation of the macro languag&n appropriate diagnostic message indicating an error may be
obtained by transferring to the program locatidmR 10 if the condition is detected.

78. PROC (procedure entry)

LOC1 PROC LOC2 \

PROC is used to identify a procedure entry poihtDC2 may be omitted, in which case€C1 is
the primary procedure entry pointf LOC2 is given,LOCL1 is a secondary entry point in the procedure
with primary entry point OC2.

Programming Notes:

1. Procedureentry points are referred to IRCALL, BRANIC, and BRANCH (in its two-agument
form).

2. In most implementationd?ROC has no functional use and may be implemented HISRE. For
machines that have a severely limited program basing range (such as the IBM Systé&RG&Djnay be
used to perform required basing operations.

79. PSTACK (post stack position)

PSTACK DESCR \

PSTACK is used to post the current stack position.
Data Input taPSTACK:

CSTACK A] \ \

Data Altered byPSTACK:

DESCR | AD | o | o0 |

Programming Notes:

1. SeealsolSTACK.

-B3-

80. PUSH (push descriptors onto stack)

PUSH (DESCR1,...,DESCRN) |

PUSH is used to push a list of descriptors onto the system stack.
Data Input tdAPUSH:

CSTACK A \ |
DESCR1 | A1 [R | vi |
DESCRN | AN [FN | VN |

Data Altered byPUSH:

CSTACK | A+(D*N) | \ |
A+D | AL [R | vi |
A+(D*N) | AN FN VN

Programming Notes:

1. If A+(D*N) > STACK+STSIZE, dack overflow occurs.Transfer should be made to the program
locationOVER, which will result in an appropriate error termination.

2. SealsoSPUSH, POP, and SPOP.

81. PUTAC (put address with offset constant)

PUTAC DESCR1,N,DESCR2 ‘

PUTAC is used to put an address field into a descriptor located at a confgant of

Data Input tdAPUTAC:

DESCR1 | A1] \ \

DESCR2 A2 | \ \ \

Data Altered byPUTAC:

AL+N | A2 | \ |

Programming Notes:

1. SeelsoGETAC, PUTVC, PUTD, and PUTDC.

82. PUTD (put descriptor)

PUTD DESCR1,DESCR2,DESCR3

PUTD is used to put a descriptor
Data Input taPUTD:

DESCR1 | AL | \ |
DESCR2 A2 | \ \ \
DESCR3 A] F | Vv |

Data Altered byPUTD:

Al+A2 | A | F | vV

Programming Notes:

1. SeealsoPUTDC, PUTAC, PUTVC, and GETD.

83. PUTDC (put descriptor with constant offset)

PUTDC DESCleLDESCRZ‘

PUTDC is used to put a descriptor at a location with a constésgtof

-55-

Data Input tdAPUTDC:

DESCR1 | A1] \

DESCR2] A \ F \ Vv

Data Altered byPUTDC:

AL+N . A | F | vV

Programming Notes:

1. SeealsoPUTD, PUTAC, PUTVC, and GETD.

84. PUTLG (put specifier length)

PUTLG SPEC,DESCR

PUTLG is used to put a length into a specifier
Data Input tdAPUTLG:

DESCR | | \ \

Data Altered byPUTLG:

SPEC y \ \

Programming Notes:
1. lis always nonnegative.

2. SeealsoGETLG.

85. PUTSPC (put specifier with offset constant)

PUTSPC DESCR,N,SPEC ‘

PUTSPC is used to put a specifier

-56 -

Data Input tdAPUTSPC:

DESCR | A1] \ \

SPEC A] F | v | o | L |

Data Altered byPUTSPC:

AL+N . A | F | v [o | L |

Programming Notes:

1. SeealsoGETSPC.

86. PUTVC (put value field with offset constant)

PUTVC DESCleLDESCRz\

PUTVC is used to put a value field into a descriptor at a location with a condtsett of
Data Input tdPUTVC:

DESCR1 A \ |

DESCR2] \ v]

Data Altered byPUTVC:

A+N y \ v]

Programming Notes:

1. SealsoPUTAC, PUTDC, and PUTD.

87. RCALL (recursive call)

RCALL DESCR,PROC,(DESCRL,...,DESCRN),(LOC1,...,.LOCM) ‘

RCALL is used to perform a recursive caDESCR is the descriptor that receives the value upon
return from the callPROC is the procedure being calleESCRL1,... DESCRN are descriptors whose
values are passed RROC. LOC1,...LOCM are locations to transfer to upon return according to the
return exit signaledThe old stack pointe®Q) is saved on the stack, the current stack pointer becomes the
old stack pointerand a new current stack pointer is generated as indicdtied.return locationOC is
saved on the stack so that the return can be properly mabe. values of the guments
DESCR1,...DESCRN are placed on the stackote that their order is theppositeof the order that

-57 -

would be obtained by usirfgUSH.

At the return locatiorLOC, code similar to that shown should be assemblée®. represents an
instruction that stores the value returnedPROC in DESCR.

Data Input taARCALL:

CSTACK [A | \ \
OSTACK] A0 \ \ \
DESCR1 | AL | FP1L | v1 |
DESCRN] AN FN VN

Data Altered byRCALL:

mo A [0 [o |
A+2D | toc | o | o |
A+3D AN | FN | VN |
A+D*2+N) | A1 | F1 | vi |
CSTACK [A+(2+N)*D | \ |
OSTACK [A | \ \

Return Code dtOC:

LOC oP DESCR1
BRANCH LOC1
BRANCH LOCM

-58 -

Programming Notes:

1. RCALL andRRTURN are used in combination, and their relation to each other must be thoroughly
understood in order to implement them correctly

2. OrdinarilyOP is an instruction to store the value returned’RTURN.

3. DESCR sometimes is omittedIn this case, any value returned BRTURN is ignored andOP
should perform no operation.

4. (DESCRL1,...,.DESCRN) sometimes is entirely omittedn this caseN should be taken to be zero in
interpreting the figures.

5. Any of the locationsLOC1,...L OCM may be omitted.As in the case of operations with omitted
conditional branches, control then passes to the operation followifRChAkL .

6. Thereturn indicated byRRTURN may beM+1, in which case control is passed to the operation
following theRCALL.

7. Thereturn indicated b)RRTURN is never greater thavi+1.

8. RCALL typically must save program state informatiddn the IBM System/360, this consists of the
location LOC and a base register for the procedure containindRtbALL. This information is pushed

onto the stackln pushing information onto the stack, care must be taken to observe the rules concerning
the use of descriptorsThe rest of the SNOBOL4 system treats the stack as descriptors, and the flag fields
of descriptors used to save program state informatiost be set to zer

9. SealsoSELBRA.

88. RCOMP (real comparison)

RCOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC

RCOMP is used to compare two real numbelsR1 > R2, transfer is toGTLOC. If R1 = R2,
transfer is taGTLOC. If R1 < R2, transfer is td.TLOC.

Data Input tatRCOMP:

DESCR1 | R1 | \ |

DESCR2R2 | \ \ \

Programming Notes:

1. SeealsoACOMP andLCOMP.

-59 -

89. REALST (convert real number to string)

REALST SPEC;DESCR‘

REALST is used to convert a real number into a specified string.
Data Input ta(REALST:

DESCR | R \ |

Data Altered byREALST:

SPEC] BUFFER \ 0 \ 0 \ 0 L

BUFFER | c [.. | cL |

Programming Notes:

1. C1...CL should represent the real numiikem the SNOBOL4 fashion, containing a decimal point and
having at least one digit before the decimal point, zeroes being added as nedéssasynegative, the
string should begin with a minus sigior compatibility with real literals and data type conversions, the
real number should not be represented in exponent form, although \@¥yotasmall real numbers may
require a lage number of characters for their representation otherwise.

2. Thenumber of digits (and hence the sizeB&fFFER) required is machine dependent and depends on
the range available for real numbers.

3. BUFFERis local toREALST and its contents may be overwritten by a subsequent IREAIST.

4. SeealsoINTSPC andSPREAL.

90. REMSP (specify remaining string)

REMSP SPEC1,SPEC2,SPEC3

REMSP is used to obtain a remainder specifier resulting from the deletion of a specified length at the
end.

Data Input ttREMSP:

SPEC2 | A2 | F2 | v2 | 02 | L2 |

SPEC3 | \ \ \ | L3 |

-60 -

Data Altered byREMSP:

SPEC1] A2 F2 V2 02+L3 L2-L3

Programming Notes:
1. SPEC1 andSPEC3 may be the same.
2. L2-L3is never negative.

3. SeealsoFSHRTN.

91. RESETF (resetflag)

RESETF DESCR,FLAG ‘

RESETF is used to reset (delete) a flag from a descriptor
Data Input ta(RESETF:

DESCR] \ F] \

Data Altered byRESETF:

DESCR] | F-FLAG | \

Programming Notes:
1. OnlyFLAG is removed from the flags v Any other flags are left unchanged.
2. If F does not contaiRLAG, no data is altered.

3. SealsoRSETFI andSETFI.

92. REWIND (rewind file)

REWIND DESCR

REWIND is used to rewind the file associated with the unit reference number

Data Input taREWIND:

DESCR I

-61-

Programming Notes:
1. Referno Section 2.1 for a discussion of unit reference numbers.

2. SealsoBKSPCE andENFILE.

93. RLINT (convert real number to integer)

RLINT DESCR1,DESCR2,FLOC,SLOC |

RLINT is used to convert a real number to an intedfethe magnitude oR exceeds the magnitude
of the lagest integertransfer is td-LOC. Otherwise transfer is t8LOC.

Data Input taRLINT:

DESCR2 | R \ |

Data Altered byRLINT:

DESCR1 | I® | o] \

Programming Notes:
1. I(R)is the integer equivalent of the real numRBer
2. Thefractional part oR is discarded.

3. lis a symbol defined in the source program and is the code for the integer data type.

94. RPLACE (replace characters)

RPLACE SPEC1,SPEC2,SPEC3 ‘

RPLACE is used to replace characters in a stri82EC2 specifies a set of characters to be
replaced. SPEC3 specifies the replacement to be made for the characters specifieBH§2. The
replacement is described by the following rulésrl = 1,...L

F(Cl) = Clif Cl 2 C2J foranyJ (L<J<L2)
F(Cl) = C3J if Cl = C2J for some] (1 < J < L2)

-62 -

Data Input ta(RPLACE:

spect [M| | ot [U]
spec2 [A2 | | o []
specs [A3 | [s []
A1+01 | c [.. | cL |
A2+02 | ca | .. | ca2 |
A3+03 | ca | .. | ca2 |

Data Altered by\RPLACE:

A1+01 | Fey | .. | Fey |

Programming Notes:
1. L may be zero.
2. Ifthere are duplicate charactergdgl...C2L2, replacement should be made corresponding to the last
instance of the charactefhat is, if
C21=C2J=..=C2K (I<J<K)
then
F(Cl)=C3K

3. RPLACE is used only in the SNOBOLREPLACE function. Itis not essential thaRPLACE be
implemented as suchif it is not, RPLACE should transfer taJNDF to provide an appropriate error
comment.

95. RRTURN (recursive return)

RRTURN DESCR,N

RRTURN is used to return from a recursive cdllESCR is the descriptor whose value is returned.
The stack pointers are repositioned as showh.the locationLOC, code similar to that shown is
assembled by thRRCALL to which return is to be madeP represents an instruction that is used by
RRTURN to return the value ddESCR. Control is transferred thOCN corresponding ttN given in the
RRTURN.

-63-

Data Input ta(RRTURN:

OSTACK [A | \ \
A+D | A0 | \
A+2D | Loc | \
DESCR | AL [R | vi |

Data Altered byRRTURN:

CSTACK A] \
OSTACK | A0 | \ |
DESCR1 | A1 [R | vi |

Return Code dtOC:

LOC oP DESCR1
BRANCH LOC1
BRANCH LOCM

Programming Notes:

1. RCALL andRRTURN are used in combination, and their relation to each other must be thoroughly
understood.

2. DESCR may be omitted.In this caseDP should not be executed.

96. RSETFI (reset flag indiect)

RSETFI DESCR,FLAG

RSETFI is used to reset (delete) a flag from a descriptor that is specified indirectly

Data Input ta(RSETFI:

DESCR A] \ \

A | I

Data Altered byRSETFI:

A] F-FLAG

Programming Notes:
1. OnlyFLAG is removed from the flags v Any other flags are left unchanged.
2. If F does not contaifLAG, no data is altered.

3. SeealsoRESETF andSETFI.

97. SBREAL (subtract real numbers)

SBREAL DESCR1,DESCR2,DESCR3,FLOC,SLOC

SBREAL is used to subtract one real number from anothHehe result is out of the range available
for real numbers, transfer isE.OC. Otherwise transfer is tSLOC.

Data Input tdcSBREAL:

DESCR?2] R2 \ F2 \ V2 \

DESCR3 | R3] \ \

Data Altered by\SBREAL:

DESCR1]R2-R3\ F2 \ V2 \

Programming Notes:

1. SeealsoADREAL, DVREAL, EXREAL, MNREAL, and MPREAL.

98. SELBRA (select branch point)

SELBRA DESCR,(LOCL,...,LOCN) |

SELBRA is used to alter the flow of program control by selecting a location from a list and
branching to it. Transfer is td.OCI corresponding td.

Data Input tdcSELBRA:

DESCR I

-65-

Programming Notes:

1. Anyof the locations may be omitted\s in the case of operations with omitted conditional branches,
control then passes to the operation followst] BRA.

2. IfI = N+1, control is passed to the operation followiBELBRA.

3. lis always in the range < | < N+1. For debugging purposes, it may be useful to verify tatvithin
this range.

99. SETAC (set address to constant)

SETAC DESCRN\

SETAC is used to set the address field of a descriptor to a constant.
Data Altered bySETAC:

DESCR] N

Programming Notes:

1. N may be a relocatable address.
2. Nisoften0, 1, oD.

3. Nis never negative.

4. SealsoSETVC, SETLC, and SETAV.

100. SETAV (set address flom value field)

SETAV DESCRLDESCRz\

SETAV sets the address field of one descriptor from the value field of another
Data Input tdSSETAV:

DESCR2 | \ | v]

Data Altered bySETAV:

DESCR1 | Vv | o [o0 |

-66 -

Programming Notes:

1. SealsoSETAC

101. SETF (setflag)

SETF DESCR,FLAG

SETF is used to set (add) a flag in the flag field&SCR.
Data Input tdSETF:

DESCR | | F] |

Data Altered bySETF:

DESCR] | F+FLAG | \

Programming Notes:
1. FLAG is added to the flags already preseri.inThe other flags are left unchanged.
2. If F already containELAG, no data is altered.

3. SeealsoSETFI.

102. SETFI (set flag indirect)

SETFI DESCR,FLAG

SETFI is used to set (add) a flag in the flag field of a descriptor specified indirectly
Data Input taSETFI:

DESCR A] \ \

A | I

Data Altered bySETFI:

A | | F+FLAG | |

-67 -

Programming Notes:
1. FLAG is added to the flags already preseri.iriThe other flags are left unchanged.
2. If F already containELAG, no data is altered.

3. SealsoSETF andRSETFI.

103. SETLC (set length of specifier to constant)

SETLC SPECN |

SETLC is used to set the length of a specifier to a constant.
Data Altered bySETLC:

SPEC] N

Programming Notes:
1. Nis never negative.
2. Nis often 0.

3. SealsoSETAC.

104. SETSIZ (setsize)

SETSIZ DESCR1,DESCR2

SETSIZ is used to set the size into the value field of a title descriptor
Data Input tdSSETSIZ:

DESCR1 A \ |

DESCR2] \ \ \

Data Altered bySETSIZ:

A | | | |

-68 -

Programming Notes:
1. Ilis always positive and small enough to fit into the value field.

2. SealsoGETSIZ

105. SETSP (set specifier)

SETSP SPEC1,SPEC2

SETSP is used to set one specifier equal to another
Data Input tdSSETSP:

SPEC2 . A | F | v [o | L |

Data Altered bySETSP:

SPEC1 A] F | v | o | L |

106. SETVA (set value field flom address)

SETVA DESCR1,DESCR2 ‘

SETVA is used to set the value field of one descriptor from the address field of another

Data Input tdSETVA:

DESCR2] | \ \ \

Data Altered bySETVA:

DESCR1] \ \ \

Programming Notes:
1. lis always positive and small enough to fit into the value field.

2. SealsoSETVA andSETVC.

-69 -

107. SETVC (set value to constant)

SETVC DESCRN\

SETVC is used to set the value field of a descriptor to a constant.
Data Altered bySETVC:

DESCR] N

Programming Notes:
1. Nis always positive and small enough to fit into the value field.

2. SealsoSETVA andSETAC.

108. SHORTN (shorten specifier)

SHORTN SPECN |

SHORTN is used to shorten the specification of a string.
Data Input tdcSHORTN:

SPEC | | | | [Lt]

Data Altered bySHORTN:

SPEC | | | | [LN

Programming Notes:

1. L-Nis never negative.

109. SPCINT (convert specifier to integer)

SPCINT DESCR,SPEC,FLOC,SLOC ‘

SPCINT is used to convert a specified string to a inte¢f&) is a signed integer resulting from the
conversion of the strin@1...CL. If C1...CL does not represent an integer or if the integer it represents is
too lage to fit the address field, transfer is=tdOC. Otherwise transfer is tSLOC.

-70 -

Data Input tacSPCINT:

SPEC A] \ | © L

A+O | c [.. | cL |

Data Altered bySPCINT:

DESCR s | o] |

Programming Notes:

1. lis a symbol defined in the source program and is the code for the integer data type.

2. C1...CL may begin with a sign (plus or minus) and may contain indefinite number of leading zeros.
Consequently the value bfitself does not determine whether the integer represented is geddefit into

an address field.

3. Asign alone is not a valid integer

4. IfL =0, I(S) should be the integer 0.

5. SealsoINTSPC andSPREAL.

110. SPEC (assemble specifier)

LOC SPEC AFV,0,L \

SPEC is used to assemble a specifier
Data Assembled b8PEC:

LOC]A\FVOL

111 SPOP (pop specifier from stack)

SPOP (SPECL,...,.SPECN) |

SPOP is used to pop a list of specifiers from the system stack.

-71-

Data Input tacSPOP:

CSTACK [A | \ \
A+D-S | AL | R | vi | o1 L1
A+D-\N*s) | AN | FN | VN [ON LN

Data Altered bySPOP:

CSTACK [A(N*S) | \ |
SPEC1] Al \ F1 \ V1 \ 01 L1
SPECN AN FN VN ON LN

Programming Notes:

1. If A-(N*S) < STACK, gack underflow occursThis condition indicates a programming error in the
implementation of the macro languagkn appropriate error termination for this error may be obtained by
transferring to the program locatitTR10 if the condition is detected.

2. SealsoPOP, SPUSH, and PUSH.

112. SPREAL (convert specified string to eal number)

SPREAL DESCR,SPEC,FLOC,SLOC |

SPREAL is used to convert a specified string into a real numB¢8) is a signed real number
resulting from the conversion of the striSg= C1. If C1...CL does not represent a real nhumluerif the
real number it represents is out of the range available for real numbers, transfEL@Qo Otherwise
transfer is t&SLOC.

Data Input tdcSPREAL:

SPEC A \ | O L

A+O | c1 [.. | cL |

-72-

Data Altered bySPREAL:

DESCR | RO | 0 R

Programming Notes:

1. Ris a symbol defined in the source program and is the code for the real data type.

2. C1,...,CL may begin with a sign (plus or minus) and may contain an indefinite humber of leading
zeros. C1,...,CL will contain a decimal point if it represents a real numbed have at least one digit
before the decimal point.

3. IfL =0, R(S) should be the real number 0.0.

4. SeelsoSPCINT andINTRL.

113. SPUSH (push specifiers onto stack)

SPUSH (SPECL,...,.SPECN) |

SPUSH is used to push a list of specifiers onto the system stack.

Data Input tdcSPUSH:

CSTACK [A | \ \
SPEC1] Al \ F1 \ V1 \ o1 L1
SPECN | AN | FN | VN | ON LN

Data Altered bysPUSH:

CSTACK | A+S™N) | \ \
A+D] Al \ F1 \ V1 \ 01 L1
A+D+S*N-S AN FN VN ON LN

-73-

Programming Notes:

1. If A+(S*N) > STACK+STSIZE, gsack overflow occurs.Transfer should be made to the program
locationOVER, which will result in an appropriate error termination.

2. SealsoPUSH, POP, and SPOP.

114. STPRNT (string print)

STPRNT DESCR1,DESCR2,SPEC

STPRNT is used to print a stringThe stringC11...C1L is printed on the file associated with unit
reference numbdr C21...C2M is the output formatJ is an integer specifying a condition signaled by the
output routine.

Data Input tdSTPRNT:

DESCR2 A \ |

pD | | |

A+2D | A2] \ \

A2 | |]

A2+4D | ca | .. | cam

SPEC | A1] \ | o1 L
Al+01 | cu | .. | cu

Data Altered bySTPRNT:

DESCR1 I \ \ \

Programming Notes:

1. TheformatC21...C2M is a FOR'RAN IV format in “ undigested’'f orm. SedFORMAT.
2. BothC11...C1L andC21...C2M begin at descriptor boundaries.

3. TheconditionJ set in the address field DPESCRL1 is not used.

4. SeenlsoOUTPUT andSTREAD.

-74 -

115. STREAD (string read)

STREAD SPEC,DESCR,EOF,ERROR,SLOC

STREAD is used to read a stringlThe stringC1...CL is read from the file associated with unit
reference numbdr If an end-of-file is encountered, transfer iSEQF. If a reading error occurs, transfer
is toERROR. Otherwise transfer is tSLOC.

Data Input tcSTREAD:

DESCR | | \ \ |

SPEC A] \ | © L

Data Altered bySTREAD:

A+O | c [.. | cL |

Programming Notes:

1. Notethat the length of the string to be read is specified by the data provig&&R®©AD. If the record
read is not of length, FORTRAN IV conventions regarding truncation or reading of additional records
should be followed.

2. SealsoSTPRNT.

116. STREAM (stream for token)

STREAM SPEC1,SPEC2,TABLE,ERROR,RUNOUT,SLOC ‘

STREAM is used to locate a syntactic token at the beginning of the string specif@feHG2. |If
there is anl (1 < | <L) such thaffl is ERROR, STOP, or STOPSH, and J is the least such then if TJ is
ERROR, transfer is tERRROR, while if if TJ is STOPSH, transfer is taSLOC. Otherwise transfer is
to RUNOUT.

In the figures that followd is the least value dffor which Tl is STOP or STOPSH. P is the last
value ofP (1 < | < J) that is nonzero (i.e. for whichRUT is specified in the syntax table description for
the tables given)If no PUT is specifiedP is zero.

-75 -

Data Input tdcSTREAM:

SPEC2 A] F | v | o | L |
A+O c1 | .. | c a1 .. | cCL|
TABLE+E*C1 [A2 | T1 | P1 |

A2+E*C2 | A3 | T2 | P2 |

AL+E*CL] | 1L | PL |

Data Altered by§TREAM if Termination isSSTOP:

STYPE P \
SPEC1A | | F | v | o [J |
SPEC2 A] F [v [ot | LJ]

Data Altered bySTREAM if Termination iSSTOPSH:

STYPE P \
SPEC1 A] \ F | v | o | J1 |
SPEC2 A] F [v [ow1] Ln

Data Altered bySTREAM if Termination isSERROR:

STYPE o | \

SPEC1 A] F | v | o L

Data Altered bySTREAM if Termination isSRUNOUT:

STYPE P] \
SPEC1IA | | F [v | o | L |
SPEC2 . A | F | v [o | o |

-76 -

Programming Notes:
1. Termination withSTOP or STOPSH may occur on the last charaGtét..

2. IfL =0 (i.e. if SPEC2 specifies the null stringRUNOUT occurs. Inthis case the address field of
STYPE should be set to 0.

3. See€Section 4.2.

117. STRING (assemble specified string)

LOC STRING 'CL_CU\

STRING is used to assemble a string and a specifier to it.
Data Assembled b8 TRING:

LOC | A | o | o [o L

A | c [.. | cL |

Programming Notes:

1. NotethatLOC is the location of the specifiamot the string. The string may immediately follow the
specifier or it may be assembled at a remote location.

118. SUBSP (substring specification)

SUBSP SPEC1,SPEC2,SPECS3,FLOC,SLOC ‘

SUBSP is used to specify an initial substring of a specified strihd.3 > L2, transfer is taSLOC.
Otherwise transfer is 8LOC andSPECL1 is not altered.

Data Input ta(SUBSP:

SPEC2] \ \ \ | L2 |

SPEC3 | A3 | F8 | v3 | 03 | L3 |

Data Altered bySUBSP if L3 = L2:

SPEC1 | A3 | F3 | v3 [03 | L2 |

-77 -

119. SUBTRT (subtract addresses)

SUBTRT DESCR1,DESCR2,DESCR3,FLOC,SLOC

SUBTRT is used to subtract one address field from anotA@rand A3 are considered as signed
integers. IfA2-A3 is out of the range available for integers, transfer BUOC. Otherwise transfer is to
SLOC.

Data Input tcSUBTRT:

DESCR2] A2 \ F2 \ V2 \

DESCR3 | A3] \ \

Data Altered bySUBTRT:

DESCR1] A2-A3 \ F2 \ V2

Programming Notes:
1. A2 andA3 may be relocatable addresses.

2. Thetest for success and failure is used in only one call of this m&teace the code to make the
check is not needed in most cases.

3. DESCRI1 andDESCR?2 are often the same.

4, SeealsoSUM.

120. SUM (sum addresses)

SUM DESCR1,DESCR2,DESCR3,FLOC,SLOC

SUM is used to add two address fieldsandl are considered as signed integdfsA+l is out of the
range available for integers, transfer ist@DC. Otherwise transfer is t8LOC.

Data Input tocSUM:

DESCR2 A] F | v |

DESCR3 | \ \ |

Data Altered bysUM:

DESCR1 A+ F | v |

-78 -

Programming Notes:
1. A may be arelocatable address.

2. Thetest for success and failure is used in only one call of this m&teace the code to make the
check is not needed in most cases.

3. DESCRI1 andDESCR?2 are often the same.

4. SeealsoSUBTRT.

121. TESTF (test flag)

TESTF DESCR,FLAG,FLOC,SLOC |

TESTF is used to test a flag field for the presence of a flag: containsFLAG, transfer is to
SLOC. Otherwise transfer is tBLOC.

Data Input toTESTF:

DESCR F

Programming Notes:

1. SeealsoTESTFI.

122. TESTFI (test flag indirect)

TESTFI DESCR,FLAG,FLOC,SLOC

TESTFI is used to test an indirectly specified flag field for the presence of alfl&gcontains
FLAG, transfer is t&SLOC. Otherwise transfer is tBLOC.

Data Input toTESTFI:

DESCR A \ |

A | L [|

Programming Notes:

1. SeealsoTESTF.

-79 -

123. TITLE (title assembly listing)

TITLE 'C1...CN' \

TITLE is used at assembly time to title the assembly listing of the SNOBOL4 sy$téirE should
cause a page eject and title subsequent pageSWNitlCN.

Programming Notes:

1. TITLE need not be implemented as suttmay simply perform no operation.

124. TOP (get to top of block)

TOP DESCR1,DESCR2,DESCR3

TOP is used to get to the top of a block of descriptdbescriptors atA, A-D,...A-(N*D) are
examined successively for the first descriptor whose flag field contains thETflagData is altered as
indicated, wher&3N is the first field to contailTL.

Data Input torOP:

DESCR3 A] F | Vv |
A-(N*D) | | F3N | |
A-D] | F31 | \
A] | F30 | \

Data Altered byrOP:

DESCR1 |AND) | F | VvV]

DESCR2 | ND | 0 [0 |

Programming Notes:

1. N may be 0.That is,F30 may containl TL.

-80-

125. TRIMSP (trim blanks fr om specifier)

TRIMSP SPECLSPECZ‘

TRIMSP is used to obtain a specifier to the part of a specified string up to a trailing string of blanks.
Data Input toTRIMSP:

SPEC2 . A | F | v [o | L |

A+O c1 | .. | c a1 .. | cL|

Data Altered byTRIMSP:

SPEC1 A] F | v | o | J]

Programming Notes:
1. IfCLis not blankJ = L.

2. IfL =0, TRIMSP is equivalent t&SETSP.

126. UNLOAD (unload external function)

UNLOAD SPEC\

UNLOAD is used to unload an external functid®l...CL represents the name of the function that is
to be unloaded.

Data Input tdAJNLOAD:

SPEC A] \ | © L

A+O | ca | .. | cL |

Programming Notes:

1. UNLOAD is a system-dependent operation.

2. UNLOAD need not be implemented as sudhit is not, it should perform no operation, since the
SNOBOL functionUNLOAD, which uses the mactdNLOAD, has a valid use in undefining existing, but
non-external, functions.

3. UNLOAD should do nothing if the functio@l...CL is not aLOADed function.

4. SeealsoLOAD andLINK.

-81-

127. VARID (compute variable identification numbers)

VARID DESCR,SPEC |

VARID is used to compute two variable identification numbers from a specified dtriagdM are
computed by

K = F1(C1...CL)
M = F2(C1...CL)

whereF1 andF2 are two (diferent) functions that compute pseudo-random numbers from the characters
C1...CL. The numbers computed should be in the ranges

0 <K < (OBSIZ-1)*D
0<M<SIZLIM

where OBSIZ is a program symbol defining the number of chains in variable storag8IahtM is a
program symbol defining the st integer that can be stored in the value field of a descriptor

Data Input to/ARID:

SPEC A \ | O L

A+O | c1 [.. | cL |

Data Altered bywARID:

DESCR K] | M

Programming Notes:

1. Kis used to select one of a number of chains in variable stofdgeK are address fsfets that must
fall on descriptor boundaries.

2. Mis used to order variables (string structures) within a ct@@ORDVST.

3. Thevalues ofK andM should have as little correlation as possible with the characfersCL, since
the “randomnes§’of the results determines thdieiency of variable access.

4. Onesimple algorithm consists of multiplying the first partGf...CL by the last part, and separating
the central portion of the result inkbandM.

5. Lis always greater than zero.

128. VCMPIC (value field compae indir ect with offset constant)

VCMPIC DESCRI1,N,DESCR2,GTLOC,EQLOC,LTLOC

-82-

VCMPIC is used to compare a value field, indirectly specified with tset€onstant, with another
value field. V1 andV2 are considered as unsigned integdfsvl > V2, transfer is toaGTLOC. If V1 =
V2, transfer is t&eQLOC. If V1 < V2, transfer is td.TLOC.

Data Input tovCMPIC:

DESCR1 | A1] \ \
DESCR2] \ | v2 |
AL+N | \ | vi |

129. VEQL (value fields equal test)

| VEQL DESCR1,DESCR2,NELOC,EQLOC |

VEQL is used to compare the value fields of two descriptdisandV2 are considered as unsigned
integers. V1 = V2, transfer is t&EQLOC. Otherwise transfer is tNELOC.

Data Input tovEQL.:

DESCR1 | \ | vi |

DESCR2V2 | \ \ \

Programming Notes:

1. SeealsoAEQL andVEQLC.

130. VEQLC (value field equal to constant test)

] VEQLC DESCR,N,NELOC,EQLOC |

VEQLC is used to compare the value field of a descriptor to a constaig.considered as an
unsigned integerlf V = N, transfer is t&EQLOC. Otherwise transfer is tNELOC.

Data Input tovEQLC:

DESCR] \ |V

Programming Notes:
1. Nis never negative.

2. SeelsoAEQLC andVEQL.

-83-

131. ZERBLK (zero block)

ZERBLK DESCR1,DESCR2

ZERBLK is used to zero a block 6f1 descriptors.
Data Input toZERBLK:

DESCR1 A \ |

DESCR2 | D1] \ \

Data Altered bZ ERBLK:

A o | o | o |

A+(D*) | 0 0 0

Programming Notes:
1. Ilis always positive.
7. Implementation Notes

7.1. OptionalMacros

There are several macros that are used in noncritical parts of the SNOBOL4 larfsomgemacros
are used only to implement certain built-in functior@thers are required only for minor executive
operations. Thdollowing list includes macros for which implementation is optiorfabr these macros,
simple alternative implementations are suggested and the language features disabled are itdicated.
selecting macros for inclusion in this list, a judgement was made concerning what features could be
disabled and still leave SNOBOL4 a useful language.

Macro Alternative Implementation Featules Disabled

ADREAL1— Branchto INTR10 Real arithmetic

BKSPCE Branch toUNDF The functionBACKSPACE

CLERTB2— Branchto UNDF The functionsANY, NOTANY, SPAN, and BREAK
DATE Set length oSPEC to 0 The functionDATE

DVREAL1— Setaddress oDESCR2 to 0 Real arithmetic and post-run statictics

1—All operations relating to real arithmetic should be implemented or not implemented as a group.
2—CLERTB andPLUGTB should be implemented or not implemented as a pair

ENFILE
EXPINT
EXREAL1—
GETBAL
INTRL1—
LEXCMP3—
LINK4—
LOAD4—
MNREAL1—
MPREAL1—
MSTIME
ORDVST
PLUGTB2—
RCOMP1—
REALST1—
REWIND
RLINT1—
RPLACE
SBREAL1—
SPREAL1—
TRIMSP
UNLOAD4—

3—LEXCMP must be properly implementedliT LOC is the same aSTLOC.

Branch toUNDF
Branch toUNDF
Branchto INTR10
Branch toUNDF
Performno operation
If GTLOC # LTLOC, branch toUNDF
Branchto INTR10
Branchto UNDF
Branchto INTR10
Branchto INTR10

Set address @ESCR to O
Perform no operation
Branchto INTR10
Branchto INTR10
Branchto UNDF
Branch tolNTR10
Branchto INTR10
Branch tolNTR10
Branchto INTR10
Take theFAILURE exit
Branch tolNTR10

Performno operation

The functionENDFILE
Exponentiation of integers

Real arithmetic

The built-in patterrBAL

Real arithmetic

The functionLGT

External functions

External functions

Real arithmetic

Real arithmetic

The functionTIME, trace timing, post-run statistics
Alphabetization of post-run dump
The functionsANY, NOTANY, SPAN,andBREAK
Real arithmetic

Real arithmetic

The functionREWIND

Real arithmetic

The functionREPLACE

Real arithmetic

Realarithmetic

The functionTRIM

External functions

4—1 INK, LOAD, and UNLOAD should be implemented or not implemented as a group.

-85-

7.2. Machine-DependenData

In addition to the data given in tl@OPY files (q.v) there are several format strings that generally
have to be changed to suit a particular machirtee strings defined bfORMAT (which occur at the end
of the source file) are in this categofihe two stringlCRDFSP andOUTPSP defined bySTRING are
also machine dependent.

7.3. Error Exits for Debugging

During the debugging phases, it is good programming practice to test for certain conditions that
should not occyrbut typically do if there is an error in the implementati®tack underflow is typical.
Transfer to the labdNTR10 upon recognition of such an error causes the SNOBOL4 run to terminate with
the messageERROR IN SNOBOL4 SYSTEM. Following this message, the statement number in which
the error occurred is printed, as well as requested dumps and termination statistics that may be helpful in
debugging.

7.4. Suboutines \ersus In-Line Code

The choice between implementing macro operations by subroutine calls or in-line code depends on a
number of factors, including the machine and its environméhe size of the SNOBOL4 system usually
encourages subroutine implementations of the more complicated operattmndollowing information,
obtained by program analysis and dynamic performance measurements, may be helpful in making these
decisions. Columr lists the macro operations in alphabetical grdeluding non-executable macros.
Column 2 gives the number of times each each macro operation occurs in the SNOBOL4 program.
Column 3 gives the percentage of time spent in each (executable) macro during execution of a typical set of
programs on the IBM System/360 implementatiditme spent in 1/O and operating system subroutines is
not included. A * marks those macros that are implementated by subroutines in the IBM System/360
implementation (including macros that call I/O and system subroutines).

ACOMP 65 2.952
ACOMPC 61 1.450
ADDLG 8 0.000
ADDSIB 6 0.000
ADDSON 12 0.017
ADJUST 2 0.000
ADREAL 1 0.000
AEQL 18 0.397
AEQLC 177 3.574
AEQLIC 10 0.086
APDSP* 93 0.897
ARRAY 5 ———
BKSIZE 5 1329
BKSPCE* 1 0.000
BRANCH 354 0.638
BRANIC 5 2.054
BUFFER 5 ———
CHKVAL 4 0.604
CLERTB 4 0.000
COPY 3 ———
CPYPAT* 14 3021
DATE* 1 0.000
DECRA 66 1.588
DEQL 73 1.346
DESCR %20 —_———
DIVIDE 4 0.000
DVREAL 2 0.000
END 1 ———

- 86—

ENDEX*
ENFILE*
EQU
EXPINT
EXREAL*
FORMAT
FSHRTN
GETAC
GETBAL*
GETD
GETDC
GETLG
GETLTH
GETSIZ
GETSPC
INCRA
INCRV
INIT*
INSERT
INTRL
INTSPC*
ISTACK
LCOMP
LEQLC
LEXCMP*
LHERE
LINK*
LINKOR
LOAD*
LOCAPT
LOCAPV
LOCSP
LVALUE*
MAKNOD
MNREAL
MNSINT
MOVA
MOVBLK*
MOVD
MOVDIC
MOWV
MPREAL
MSTIME*
MULT
MULTC
ORDVST*
OUTPUT*
PLUGTB
POP
PROC
PSTACK
PUSH
PUTAC
PUTD

155

173

124
11
33

-87-

PUTDC 126 3.056

PUTLG 9 0.189
PUTSPC 1 0.138
PUTVC 1 0.034
RCALL 342 8.927
RCOMP 6 0.000
REALST* 10 0.000
REMSP 7 0.448
RESETF 3 0.000
REWIND* 1 0.000
RLINT 2 0.000
RPLACE* 1 0.000
RRTURN 21 6.182
RSETFI 2 0.000
SBREAL 1 0.000
SELBRA 18 0.017
SETAC 169 0.673
SETAV 33 1.830
SETF 1 0.000
SETFI 5 0.086
SETLC 28 0.034
SETSIZ 7 0.155
SETSP 23 0.155
SETVA 14 0.051
SETVC 28 0.207
SHORTN 4 0.000
SPCINT* 24 0.069
SPEC c —_———
SPOP 4 0.000
SPREAL* 13 0.000
SPUSH 4 0.000
STPRNT* 15 0.051
STREAD* 4 0.051
STREAM* 35 0.656
STRING 52
SUBSP 3 0.362
SUBTRT 22 0.189
SUM 67 1.709
TESTF 24 1.899
TESTFI 9 0.707
TITLE 24
TOP 4 0.241
TRIMSP 2 0.069
UNLOAD* 1 0.000
VARID 1 0.897
VCMPIC 1 0.535
VEQL 3 2.158
VEQLC 106 0.759
ZERBLK 3 0.128

7.5. Classificationof Macro Operations

In the following sections, the macro operations are classified according to the way they are
used.

88

Assembly Control Macros:

COPY END EQU LHERE TITLE

Macros that Assemble Data:

ARRAY BUFFER DESCR FORMAT SPEC
STRING

Branch Macros:

BRANCH BRANIC SELBRA

Comparison Macros:

ACOMP ACOMPC AEQL AEQLC AEQLIC
CHKVAL DEQL LCOMP LEQLC LEXCMP
RCOMP TESTF TESTFI VCMPIC VEQL
VEQLC

Macros that Relate to Recursive Ricedures and Stack Management:

ISTACK POP PROC PSTACK PUSH
RCALL RRTURN SPOP SPUSH

Macros that Move and Set Descriptors:

GETD GETDC MOVBLK MOVD MOVDIC
POP PUSH PUTD PUTDC ZERBLK

Macros that Modify Address Fields of Descriptors:

ADJUST BKSIZE DECRA GETAC GETLG
GETLTH GETSIZ INCRA MOVA PUTAC
SETAC SETAV

Macros that Modify Value Fields of Descriptors:
INCRV MOVV PUTVC SETSIZ SETVA
SETVC

Macros that Modify Flag Fields of Descriptors:
RESETF RSETFI SETF SETFI

Macros that Perform Integer Arithmetic on Address Fields:
DECRA DIVIDE EXPINT INCRA MNSINT
MULT MULTC SUBTRT SUM

Macros that Deal with Real Numbers:

89

ADREAL DVREAL EXREAL INTRL MNREAL
MPREAL RCOMP REALST RLINT SBREAL
SPREAL

Macros that Move Specifiers:
GETSPC PUTSPC SETSP SPOP SPUSH

Macros that Operate on Specifiers:

ADDLG APDSP FSHRTN GETBAL INTSPC
LOCSP PUTLG REMSP SETLC SHORTN
STREAM SUBSP TRIMSP

Macros that Operate on Syntax &bles:
CLERTB PLUGTB

Macros that Construct Pattern Nodes:
CPYPAT MAKNOD

Macros that Operate on Tee Nodes:
ADDSIB ADDSON INSERT

Input and Output Macr os:

BKSPCE ENFILE FORMAT OUTPUT REWIND
STPRNT STREAD

Macros that Depend on Operating System Facilities:

DATE ENDEX INIT LINK LOAD
MSTIME UNLOAD

Miscellaneous Macps:
LINKOR LOCAPT LOCAPV LVALUE ORDVST
RPLACE SPCINT TOP VARID

7.6. Formatof the SNOBOL4 Souce File

One problem in implementing SNOBOL4 for a particular machine involves putting the
macro languagg@rogram into a form suitable for the assembler for that machiis typically
involves making a number of format changes and correcting a few special cases byt hand.
desirable to perform as many changes as possible by some systematic, mechanical means (preferably
with a program) so that new versions of the mdmnguage program can be converted into the
required form easilythus facilitating the incorporation of updates in the SNOBOL4 languége.
systematic, mechanical technique also minimizes random errors inevitably introduced by human
interference. Suchandom errors are particularly dangerous in such an implementation, since most
of the logic of the system is at a level divorced from the implementation of the macro langhige.
section describes the format of the mdarguage program in order to make the necessary format

changes easier to determine.

90

The SNOBOL4 assembly source file consists of166Q character card imagesAll card
images are blank in column 72 and contain sequence numbering in columns 73 througld&@s
to the source file are given in terms of these sequence numbers, so care should be taken not to destroy
this information. There are two kinds of card imaggzogram text and comment€omments have
an asterisk (*) in column 1 and descriptive text of various types in columns 2 throudttl dther
card images (about 4850 out of the total of§6dre program textProgram text has a field format
as follows:

1. Columnsl through 6: label field. A program label, if present, begins in columnAll labels
begin with a letterfollowed by letters or digitsLabels are from two through six characters in
length. Ifa program card has no label, the label field is blank.

2. Column7: blank.

3. Columns8 through 13: operation fieldProgram text has operations that begin in column 8.
Operations consist of from three to six letters.

4. Columnsl4 and 15:blank.

5. Columnsl6 through 71:variable field. A list of operands appears in the variable field starting
in column 16. The list consists of items separated by comnid®e last item in the list is followed
by a blank. If there are no operands, there is a comma in column 16 and a blank in colltemg 7.
in the operand list may take several forms:

a. Identifierswhich satisfy the requirements of program labels.
b Integerconstants.

C. Arithmeticexpressions containing identifiers and constants.
d

Lists of items enclosed in parenthesddsts are not nested, i.e. lists do not occur as items
within lists.

e. Charactelliterals, consisting of characters enclosed in single quotation ma&ykstation
marks do not occur within literals, but commas, parentheses, and blankg himyact must
be taken into account in analyzing the variable field.

f. Nulls, or items of zero length.Nulls represent explicity omitted guments to macro
operations.

Comments may occur following the blank that terminates the variable Seidh comments
begin in column 36 or subsequently

The following portion of program is typical.

* * 00000821
* 00000822
* Block Marking 00000823
* 00000824
GCM PROC , Procedure to mark blocks 00000825
POP BK1CL Restore block to mark from 00000826
PUSH ZEROCL Save end marker 00000827
GCMA1 GETSIZ BKDX,BK1CL Get size of block 00000828
GCMA2 GETD DESCL,BK1CL,BKDX Get descriptor 00000829
TESTF DESCL,PTR,GCMA3 Is it a pointer? 00000830
AEQLC DESCL,0,,GCMA3 Is address zero? 00000831
TOP TOPCL,OFSET,DESCL Get to title of block pointed to 00000832
TESTFI TOPCL,MARK,GCMA4 Is block marked? 00000833
GCMA3 DECRA BKDX,DESCR Decrement offset 00000834
AEQLC BKDX,0,GCMA2 Check for end of block 00000835
POP BK1CL Restore block pushed 00000836
AEQLC BK1CL,0,,RTN1 Check for end 00000837
SETAV BKDX,BK1CL Get size remaining 00000838
BRANCH GCMA2 Continue processing 00000839
* 00000840

91

GCMA4 DECRA BKDX,DESCR
AEQLC BKDX,0,,GCMA9
SETVA BK1CL,BKDX

PUSH BK1CL

GCMA9 MOVD BK1CL,TOPCL
SETFI BK1CL,MARK
TESTFI BK1CL,STTL,GCMA1
MOVD BKDX,TWOCL

BRANCH GCMA2

Acknowledgement

The SIL version of SNOBOL4 was implemented jointly by the authior Poage, and Ivan

Decrement offset
Check for end

Insert offset

Save current block

Set poiner to new block
Mark block

Is it a string?

Set size of string to 2
Join processing

00000841
00000842
00000843
00000844
00000845
00000846
00000847
00000848
00000849
00000850

Polonsky Other individuals, too numerous to mention here, have provided many helpful criticisms and

corrections ofthisdocument.

-92—-

Appendix A— Syntax Table Descriptions

BEGIN BIOPTB
FOR(PLUS) PUT(ADDFN) GOTO(TBLKTB)
FOR(MINUS) PUT(SUBFN) GOTO(TBLKTB)
FOR(DOT) PUT(NAMFN) GOTO(TBLKTB)
FOR(DOLLAR) PUT(DOLFN) GOTO(TBLKTB)
FOR(STAR) PUT(MPYFN) GOTO(STARTB)
FOR(SLASH) PUT(DIVFN) GOTO(TBLKTB)
FOR(AT) PUT(BIATFN) GOTO(TBLKTB)
FOR(POUND) PUT(BIPDFN) GOTO(TBLKTB)
FOR(PERCENT) PUT(BIPRFN) GOTO(TBLKTB)
FOR(RAISE) PUT(EXPFN) GOTO(TBLKTB)
FOR(ORSYM) PUT(ORFN) GOTO(TBLKTB)
FOR(KEYSYM) PUT(BIAMFN) GOTO(TBLKTB)
FOR(NOTSYM) PUT(BINGFN) GOTO(TBLKTB)
FOR(QUESYM) PUT(BIQSFN) GOTO(TBLKTB)
ELSE ERROR

END BIOPTB

BEGIN CARDTB
FOR(CMT) PUT(CMTTYP) STOPSH
FOR(CTL) PUT(CTLTYP) STOPSH
FOR(CNT) PUT(CNTTYP) STOPSH
ELSE PUT(NEWTYP) STOPSH
END CARDTB

BEGIN DQLITB
FOR(DQUOTE) STOP
ELSE CONTIN

END DQLITB

BEGIN ELEMTB
FOR(NUMBER) PUT(ILITYP) GOTO(INTGTB)
FOR(LETTER) PUT(VARTYP) GOTO(VARTB)
FOR(SQUOTE) PUT(QLITYP) GOTO(SQLITB)
FOR(DQUOTE) PUT(QLITYP) GOTO(DQLITB)
FOR(LEFTPAREN) PUT(NSTTYP) STOP
ELSE ERROR

END ELEMTB

BEGIN EOSTB
FOR(EOS) STOP
ELSE CONTIN
END EOSTB

BEGIN FLITB

FOR(NUMBER) CONTIN
FOR(TERMINATOR) STOPSH
ELSE ERROR

END FLITB

-03-

BEGIN FRWDTB
FOR(BLANK) CONTIN

FOR(EQUAL) PUT(EQTYP) STOP
FOR(RIGHTPAREN) PUT(RPTYP) STOP
FOR(RIGHTBR) PUT(RBTYP) STOP
FOR(COMMA) PUT(CMATYP) STOP
FOR(COLON) PUT(CLNTYP) STOP
FOR(EOS) PUT(EOSTYP) STOP

ELSE PUT(NBTYP) STOPSH

END FRWDTB

BEGIN GOTFTB
FOR(LEFTPAREN) PUT(FGOTYP) STOP
FOR(LEFTBR) PUT(FTOTYP) STOP
ELSE ERROR

END GOTFTB

BEGIN GOTOTB
FOR(SGOSYM) GOTO(GOTSTB)
FOR(FGOSYM) GOTO(GOTFTB)
FOR(LEFTPAREN) PUT(UGOTYP) STOP
FOR(LEFTBR) PUT(UTOTYP) STOP
ELSE ERROR

END GOTOTB

BEGIN GOTSTB
FOR(LEFTPAREN) PUT(SGOTYP) STOP
FOR(LEFTBR) PUT(STOTYP) STOP
ELSE ERROR

END GOTSTB

BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR

END IBLKTB

BEGIN INTGTB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) PUT(ILITYP) STOPSH
FOR(DOT) PUT(FLITYP) GOTO(FLITB)
ELSE ERROR

END INTGTB

BEGIN LBLTB
FOR(ALPHANUMERIC) GOTO(LBLXTB)
FOR(BLANK,EOS) STOPSH

ELSE ERROR

END LBLTB

-94-

BEGIN LBLXTB
FOR(BLANK,EOS) STOPSH
ELSE CONTIN

END LBLXTB

BEGIN NBLKTB
FOR(TERMINATOR) ERROR
ELSE STOPSH

END NBLKTB

BEGIN NUMBTB
FOR(NUMBER) GOTO(NUMCTB)
FOR(PLUS,MINUS) GOTO(NUMCTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR

END NUMBTB

BEGIN NUMCTB
FOR(NUMBER) CONTIN
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR

END NUMCTB

BEGIN SNABTB
FOR(FGOSYM) STOP
FOR(SGOSYM) STOPSH
ELSE ERROR

END SNABTB

BEGIN SQLITB
FOR(SQUOTE) STOP
ELSE CONTIN

END SQLITB

BEGIN STARTB
FOR(BLANK) STOP

FOR(STAR) PUT(EXPFN) GOTO(TBLKTB)
ELSE ERROR

END STARTB

BEGIN TBLKTB
FOR(BLANK) STOP
ELSE ERROR
END TBLKTB

-95-

BEGIN UNOPTB
FOR(PLUS) PUT(PLSFN) GOTO(NBLKTB)
FOR(MINUS) PUT(MNSFN) GOTO(NBLKTB)
FOR(DOT) PUT(DOTFN) GOTO(NBLKTB)
FOR(DOLLAR) PUT(INDFN) GOTO(NBLKTB)
FOR(STAR) PUT(STRFN) GOTO(NBLKTB)
FOR(SLASH) PUT(SLHFN) GOTO(NBLKTB)
FOR(PERCENT) PUT(PRFN) GOTO(NBLKTB)
FOR(AT) PUT(ATFN) GOTO(NBLKTB)
FOR(POUND) PUT(PDFN) GOTO(NBLKTB)
FOR(KEYSYM) PUT(KEYFN) GOTO(NBLKTB)
FOR(NOTSYM) PUT(NEGFN) GOTO(NBLKTB)
FOR(ORSYM) PUT(BARFN) GOTO(NBLKTB)
FOR(QUESYM) PUT(QUESFN) GOTO(NBLKTB)
FOR(RAISE) PUT(AROWFN) GOTO(NBLKTB)
ELSE ERROR

END UNOPTB

BEGIN VARATB
FOR(LETTER) GOTO(VARBTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR

END VARATB

BEGIN VARBTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR

END VARBTB

BEGIN VARTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(TERMINATOR) PUT(VARTYP) STOPSH
FOR(LEFTPAREN) PUT(FNCTYP) STOP
FOR(LEFTBR) PUT(ARYTYP) STOP

ELSE ERROR

END VARTB

-96—-

Appendix B— Available Implementation Material

There is a substantial amount of material available to the woeldnstaller of the SIL
implementation of SNOBOLAMuch ofthe basicdocumentationis giveninabookthatis available through
book suppliersTherestofthe materialis available fromthe University of Arizona:

Ralph E. Griswold

Departmentof Computer Science
University Computer Center

The University of Arizona
Tucson, Arizona 85721

U.S.A.

telephone: (602) 626.829

Thereis no chae for this material but magnetic tapes mustbe supplied with requests for mesditadle
material.

Documentswithidentifying numbers should be requested by number

1. \ersion 3.1 SL source code and syntax table descriptionsin maeh#aelable formrThis material
is available in a variety of tape formal$e standard distribution is-8ack, 1600 bpi, unlabeled
fixed-blocked, EBCDIC.

2. S4D54cTransporting the SIL&fsion of SNOBOL4; An Overvie@ives a brief description of the
processing ofimplementing the SIL version of SNOBOL4; suggested reading prior to serious work
ontheimplementation.

3. The Maco Implementation of SNOBOL4; A Case Study of Maefrependent Softwar
Development(author: RalplE. Griswold, publishefV. H. Freeman & Co.A description of the
SIL version of SNOBOL4 that describes data structures, algorithms, the SIL macros, and gives
examples from the IBM 360 and CDC 6000 implementati®hgs book is available from book
sellers. Therice is approximately $25.00he terminology used in this book isfdifent from that
usedintheactual SIL sour&ee S4D59 below

4. Corrigenda for The Maarimplementation of SNOBOL@orrections to the Freeman book listed
above.

5. S4D59:Comparison of @rminologies for the SIL Implementation of SNOBOE4plains the
differences between terminology of the Freeman book and that actually used in the
machinereadable SIL program.

6. S4D26cSouce and Coss-Refeence Listings for the SIL Implementation of SNOBOE#sign
3.11. Listing of SNOBOL4 written in SILThisdocumentis primarily useful for its crossreference to
programsymbols.

7. S4D20aiBM 360 Macp Definitions for ¥rsion 3 of SNOBOLA4. isting of the IBM 360 macro

definitions for SIL operations; primarily useful as an example of an existing implementéteon.
macro definitions are also available in machieadable form.

8. S4D19alBM 360 Suboutines for ¥rsion 3 of SNOBOLA isting of the IBM 360 subroutines that
support SIL operations; primarily useful as an example of an existing implementBtien.
subroutines are also available in machkiieadable form.

9. S4D57:iImplementations of SNOBOL@ompilation of SNOBOL4 implementations, including
those donein SIL; primarily useful as asource of contacts with other SIL implementors.

-97-

