
-- --

The University of Arizona
Department of Computer Science
Tucson, Arizona 85721

Transporting the SIL Version of SNOBOL4

An Overview

Ralph E. Griswold

1. Introduction

The macro implementation of SNOBOL4 is written in SIL, an assembly-like language for an
abstract machine (AM) that does not correspond to the architecture of any actual computer. SNOBOL4
may be implemented on a particular target machine (TM) by implementing SIL on that machine. This is
usually done by treating SIL operations as macros in the assembly language of the TM. Consequently, SIL
is implemented by providing suitable TM macro definitions for the AM operations.

This paper is an overview of the process involved in installing the macro implementation of SNO-
BOL4 on a TM. A list of material available to support such installations is included for reference.

2. Suitable TMs

SNOBOL4 as implemented in SIL is designed for large-scale digital computers with substantial
amounts of memory. The SNOBOL4 system is organized as one large program (rather than as a number of
modules) in order to avoid addressing and binding problems. As a consequence, it cannot be segmented
easily.

To give an idea of the memory resources required, the SIL implementation of SNOBOL4 requires a
user region of at least 165K bytes on the IBM 360/370, and 185-200K bytes are needed to run large pro-
duction programs satisfactorily. SIL implementations on other computers require similar memory
resources.

Although the macro implementation of SNOBOL4 has been installed satisfactorily on machines with
virtual-memory environments, performance of these implementations is usually poor unless relatively large
amounts of physical memory are available. Installations on machines with small amounts of memory have
generally been unsuccessful.

SIL makes few specific demands on TM architecture. It does not, for example, even assume the
existence of any hardware registers. The suitability of a particular TM architecture and its instruction set
affects the size and efficiency of the result to some extent, and may make the implementation of SIL more
or less difficult. TM architecture itself does not generally determine the feasibility of implementing SIL,
however.

TM word size (or equivalent addressing constraints) may have a significant impact on the size of an
implementation, and in extreme cases may be a major factor in determining feasibility. This aspect of
architecture is important because SIL is based on the concept of a ‘‘descriptor’’, which is the basic
‘‘word’’ of the AM. If the TM word fits the AM descriptor well, implementation is relatively easier and
more economical of space. If the fit is poor, the amount of TM memory needed may nearly double.
Experience has shown that a word size of 60 bits is close to ideal. A 45-bit word is the smallest ever suc-
cessfully used to represent an AM descriptor. Below this word size, at least two TM words are needed to
represent each AM descriptor. The significance of this matter is illustrated by the fact that the SIL version
of SNOBOL4 requires about 10,000 descriptors of AM memory for dynamic allocation during SNOBOL4
program execution.

S4D54d June 9, 1987

-- --

- 2 -

3. The Transporting Process

The conceptually simple technique for transporting SNOBOL4 to a specific TM involves a number
of steps, which require the installer to:

(1) review the documentation

(2) translate the source material into TM form

(3) design data layouts for the TM

(4) provide TM macro definitions for SIL operations

(5) assemble the translated SNOBOL4 system

(6) test and debug the result

Rather substantial documentation about the macro implementation of SNOBOL4 is available; see Section
5.

The macro implementation of SNOBOL4 is distributed to would-be installers as two machine-
readable files, one containing the SIL program and the other containing a description of syntax tables used
by the compiler. Since character sets and assembly-language formats vary from one system to system, one
of the installer’s first tasks is to detect such problems and to translate the SIL program as distributed into a
form suitable for the TM. One of the best tools for performing this translation is SNOBOL4 itself. The
availability of SNOBOL4 on a machine other than the TM permits cross translation.

Data layout involves adaptation of the TM architecture to the AM descriptor. Descriptors consist of
fields used to represent various kinds of values manipulated by SIL. Field layout depends on size require-
ments of SIL and positioning that is influenced by TM architecture and SIL use of the fields.

In addition, the installer must construct syntax tables that are used in lexical analysis by the SNO-
BOL4 compiler and in pattern matching. Syntax tables may be constructed using descriptors or they may
be tailored to the architecture of the TM.

There are 130 different SIL macros. Many operate on SIL descriptors or their fields. Others move
strings, perform lexical analysis, do input/output and so forth.

4. Difficulties with the Implementation

Although the method of implementing SIL appears to be simple on the surface, the amount of work
required is significant and there are a number of difficulties and potential pitfalls.

Some SIL operations are complicated. Examples are string concatenation, real exponentiation, and
string-to-numerical conversions. Other potentially troublesome SIL operations include input, output, and
interfacing the operating system.

The representation of syntax tables is left largely to the installer, since character set sizes and collat-
ing sequences vary substantially from one TM to another. This aspect of the installation therefore requires
more installer knowledge and skill than most other aspects.

Another major stumbling block is the lack of test programs for either SIL or SNOBOL4. While the
latter can be supplied with relative ease by any experienced SNOBOL4 programmer, the lack of test rou-
tines for SIL is a much more serious problem. In fact, the only existing SIL program is SNOBOL4 itself.
Consequently, unless the installer is willing to make a substantial commitment to developing SIL tests
locally, SIL must be debugged by running SNOBOL4 in its entirety.

In spite of these problems, the macro implementation of SNOBOL4 has been successfully imple-
mented on over 30 different computers. The time required for these implementations has varied consider-
ably, and depends on such factors as installer competence, quality of local computer facilities, and TM
architecture. The range of effort required typically varies from three to six man-months.

5. Available Material

There is a substantial amount of material available to the would-be installer of the SIL implementa-
tion of SNOBOL4. Much of the basic documentation is given in a book that is available through book sup-
pliers. The rest of the material is available from the University of Arizona:

S4D54d June 9, 1987

-- --

- 3 -

Ralph E. Griswold
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

telephone: (602) 621-6613

Documents with identifying numbers should be requested by number.

1. Version 3.11 SIL source code and syntax table descriptions in machine-readable form. This material
is available in a variety of tape formats. The standard distribution is 9-track, 1600 bpi, unlabeled
fixed-blocked, EBCDIC. The distribution also is available on MS-DOS 5.25′′ diskettes. Enquire for
prices.

2. S4D58: Implementing SNOBOL4 in SIL; Version 3.11. Detailed instructions for designing data lay-
outs and implementing the individual macro operations; the ‘‘cookbook’’.

3. The Macro Implementation of SNOBOL4; A Case Study of Machine-Independent Software Develop-
ment. (author: Ralph E. Griswold, publisher: W. H. Freeman & Co.) A description of the SIL ver-
sion of SNOBOL4 that describes data structures, algorithms, the SIL macros, and gives examples
from the IBM 360 and CDC 6000 implementations. This book is available from book sellers. The
price is approximately $25.00. The terminology used in this book is different from that used in the
actual SIL source. See S4D59 below.

4. Corrigenda for The Macro Implementation of SNOBOL4. Corrections to the Freeman book listed
above.

5. S4D59: Comparison of Terminologies for the SIL Implementation of SNOBOL4. Explains the differ-
ences between terminology of the Freeman book and that actually used in the machine-readable SIL
program.

6. S4D26c: Source and Cross-Reference Listings for the SIL Implementation of SNOBOL4; Version
3.11. Listing of SNOBOL4 written in SIL. This document is primarily useful for its cross reference
to program symbols.

7. S4D20a: IBM 360 Macro Definitions for Version 3 of SNOBOL4. Listing of the IBM 360 macro
definitions for SIL operations; primarily useful as an example of an existing implementation. The
macro definitions are also available in machine-readable form.

8. S4D19a: IBM 360 Subroutines for Version 3 of SNOBOL4. Listing of the IBM 360 subroutines that
support SIL operations; primarily useful as an example of an existing implementation. The subrou-
tines are also available in machine-readable form.

9. S4D57: Implementations of SNOBOL4. Compilation of SNOBOL4 implementations, including those
done in SIL; primarily useful as a source of contacts with other SIL implementors.

S4D54d June 9, 1987

